Rahatara commited on
Commit
820626f
·
verified ·
1 Parent(s): 451d32c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +210 -30
app.py CHANGED
@@ -1,14 +1,106 @@
1
  import gradio as gr
 
 
2
  import trimesh
3
  import numpy as np
4
  from PIL import Image
 
 
5
  import tempfile
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  # Function to visualize texture based on selection criteria
8
- def visualize_dynamic_texture(predefined_section, x_min, x_max, y_min, y_max, z_min, z_max):
9
  # Load the original mesh
10
  mesh = trimesh.load('train.glb', force='mesh')
11
- rust_texture = Image.open('rust_steel.png').convert('RGB')
12
 
13
  # Predefined sections
14
  if predefined_section == 'right compartments':
@@ -32,8 +124,8 @@ def visualize_dynamic_texture(predefined_section, x_min, x_max, y_min, y_max, z_
32
  new_uv[selected_indices, :] = uv[selected_indices, :]
33
 
34
  # Create material and apply the new texture
35
- material = trimesh.visual.texture.SimpleMaterial(image=rust_texture)
36
- color_visuals = trimesh.visual.TextureVisuals(uv=new_uv, image=rust_texture, material=material)
37
  textured_mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, visual=color_visuals, validate=True, process=False)
38
 
39
  # Save the mesh to a temporary file
@@ -51,39 +143,127 @@ x_min_range, x_max_range = train_bounds[0][0], train_bounds[1][0]
51
  y_min_range, y_max_range = train_bounds[0][1], train_bounds[1][1]
52
  z_min_range, z_max_range = train_bounds[0][2], train_bounds[1][2]
53
 
54
- # Gradio UI with a single window, dynamic updates, and real-time changes
55
  with gr.Blocks() as app:
56
- gr.Markdown("### 3D Model Texture Application with Predefined and Custom Sections")
57
- original_model = gr.Model3D('train.glb', label="Original Model")
58
- modified_model = gr.Model3D(label="Model with Applied Texture")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- # Dropdown for predefined and custom selection
61
- section_dropdown = gr.Radio(choices=['right compartments', 'left compartments', 'freight_body', 'custom'], label="Select Section", value='custom')
 
 
 
 
62
 
63
- # Custom sliders for the bounding box selection
64
- with gr.Row(visible=True) as custom_controls:
65
- x_min_slider = gr.Slider(minimum=x_min_range, maximum=x_max_range, step=0.01, label="X Min", value=x_min_range)
66
- x_max_slider = gr.Slider(minimum=x_min_range, maximum=x_max_range, step=0.01, label="X Max", value=x_max_range)
 
 
 
 
67
 
68
- y_min_slider = gr.Slider(minimum=y_min_range, maximum=y_max_range, step=0.01, label="Y Min", value=y_min_range)
69
- y_max_slider = gr.Slider(minimum=y_min_range, maximum=y_max_range, step=0.01, label="Y Max", value=y_max_range)
 
 
 
 
 
 
70
 
71
- z_min_slider = gr.Slider(minimum=z_min_range, maximum=z_max_range, step=0.01, label="Z Min", value=z_min_range)
72
- z_max_slider = gr.Slider(minimum=z_min_range, maximum=z_max_range, step=0.01, label="Z Max", value=z_max_range)
 
73
 
74
- # Toggle visibility of custom controls
75
- def toggle_custom_controls(predefined_section):
76
- return gr.update(visible=(predefined_section == 'custom'))
 
 
77
 
78
- section_dropdown.change(fn=toggle_custom_controls, inputs=section_dropdown, outputs=custom_controls)
 
 
 
 
 
79
 
80
- # Update model dynamically
81
- def update_model(predefined_section, x_min, x_max, y_min, y_max, z_min, z_max):
82
- return visualize_dynamic_texture(predefined_section, x_min, x_max, y_min, y_max, z_min, z_max)
83
 
84
- # Add event listeners for real-time updates when sliders or dropdown change
85
- inputs = [section_dropdown, x_min_slider, x_max_slider, y_min_slider, y_max_slider, z_min_slider, z_max_slider]
86
- for input_component in inputs:
87
- input_component.change(fn=update_model, inputs=inputs, outputs=modified_model)
 
88
 
89
- app.launch()
 
1
  import gradio as gr
2
+ import replicate
3
+ import openai
4
  import trimesh
5
  import numpy as np
6
  from PIL import Image
7
+ import requests
8
+ import io
9
  import tempfile
10
+ import random
11
+ import os
12
+
13
+ # Set API tokens
14
+ os.environ["REPLICATE_API_TOKEN"] = "r8_Pc64F8EPrJ6PiNIIvaBUZcOGmiLC3Jp1gELYB"
15
+ OPENAI_API_KEY = "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"
16
+
17
+ # Initialize the Replicate client
18
+ rep_client = replicate.Client()
19
+
20
+ # Material defects structure
21
+ material_defects = {
22
+ "Steel": ["Rust and Corrosion", "Pitting Corrosion", "Surface Cracks", "Wear Patterns", "Spalling", "Scaling"],
23
+ "Glass": ["Cracks", "Chips", "Scratches", "Frosting"],
24
+ "Aluminum": ["Corrosion", "Scratches and Dents", "Anodizing Wear"],
25
+ "Wood": ["Rot and Decay", "Cracks and Splits", "Weathering"],
26
+ "Plastics and Polymers": ["Cracking and Crazing", "UV Degradation", "Heat Distortion"],
27
+ "Rubber": ["Cracking", "Hardening and Brittleness", "Surface Wear"],
28
+ "Composite Materials": ["Delamination", "Impact Damage", "Fiber Wearing"],
29
+ "Ceramics": ["Crackling", "Chipping and Pitting", "Glaze Deterioration"]
30
+ }
31
+
32
+ # Function to ask rail defect question
33
+ def ask_rail_defect_question(question, model_name='ft:gpt-3.5-turbo-0125:personal::99NsSAeQ'):
34
+ structured_prompt = f"Translate the following user input into a concise, detailed visual description for a 3D model based on this input: '{question}'. Focus only on the defect’s appearance, texture qualities, and visual effects it would have on the material. Start the description directly with no extra words."
35
+ response = openai.ChatCompletion.create(
36
+ model=model_name,
37
+ messages=[
38
+ {"role": "system", "content": "Provide a concise, detailed visual description of the material's defect texture, focusing on visual and tactile qualities. Do not include any additional context or introductory phrases. Imagine the textures on railway components, but describe only the texture and material."},
39
+ {"role": "user", "content": structured_prompt}
40
+ ],
41
+ )
42
+ refined_description = response.choices[0].message['content']
43
+ return refined_description.strip()
44
+
45
+ # Function to generate images from prompts
46
+ def generate_images(prompt):
47
+ prediction = rep_client.predictions.create(
48
+ version="ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e",
49
+ input={"prompt": prompt}
50
+ )
51
+ prediction.wait()
52
+ if prediction.status == "succeeded":
53
+ image_url = prediction.output[0]
54
+ response = requests.get(image_url)
55
+ image = Image.open(io.BytesIO(response.content))
56
+ return image
57
+ return "Failed to generate texture image"
58
+
59
+ # Function to create data URL from PIL image
60
+ def image_to_data_url(pil_image):
61
+ buffered = io.BytesIO()
62
+ pil_image.save(buffered, format="JPEG")
63
+ base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
64
+ return f"data:image/jpeg;base64,{base64_image}"
65
+
66
+ # Function to inpaint images
67
+ def inpaint_texture(image, prompt):
68
+ if isinstance(image, np.ndarray):
69
+ image = Image.fromarray(image)
70
+
71
+ image_data_url = image_to_data_url(image)
72
+
73
+ input = {
74
+ "image": image_data_url,
75
+ "prompt": prompt,
76
+ "scheduler": "K_EULER_ANCESTRAL",
77
+ "num_outputs": 1,
78
+ "guidance_scale": 7.5,
79
+ "num_inference_steps": 100,
80
+ "image_guidance_scale": 1.5
81
+ }
82
+
83
+ prediction = rep_client.predictions.create(
84
+ version="30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f",
85
+ input = input
86
+ )
87
+ prediction.wait()
88
+ if prediction.status == "succeeded":
89
+ image_url = prediction.output[0]
90
+ response = requests.get(image_url)
91
+ image = Image.open(io.BytesIO(response.content))
92
+ return image
93
+ return "Failed to generate inpainted texture image"
94
+
95
+ # Function to update defect options
96
+ def update_defect_options(selected_material):
97
+ return gr.update(value='', choices=material_defects[selected_material])
98
 
99
  # Function to visualize texture based on selection criteria
100
+ def visualize_dynamic_texture(image, predefined_section, x_min, x_max, y_min, y_max, z_min, z_max):
101
  # Load the original mesh
102
  mesh = trimesh.load('train.glb', force='mesh')
103
+ custom_texture = image.convert('RGB')
104
 
105
  # Predefined sections
106
  if predefined_section == 'right compartments':
 
124
  new_uv[selected_indices, :] = uv[selected_indices, :]
125
 
126
  # Create material and apply the new texture
127
+ material = trimesh.visual.texture.SimpleMaterial(image=custom_texture)
128
+ color_visuals = trimesh.visual.TextureVisuals(uv=new_uv, image=custom_texture, material=material)
129
  textured_mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, visual=color_visuals, validate=True, process=False)
130
 
131
  # Save the mesh to a temporary file
 
143
  y_min_range, y_max_range = train_bounds[0][1], train_bounds[1][1]
144
  z_min_range, z_max_range = train_bounds[0][2], train_bounds[1][2]
145
 
146
+ # Gradio app interface setup
147
  with gr.Blocks() as app:
148
+ with gr.Tabs():
149
+ with gr.Tab("3D Defect Simulator"):
150
+ with gr.Tabs():
151
+ with gr.Tab("Predefined Defect Texture"):
152
+ with gr.Row():
153
+ material_input = gr.Dropdown(choices=list(material_defects.keys()), label="Select Material")
154
+ defect_input = gr.Dropdown(choices=[], label="Select Defect Type")
155
+ generate_button = gr.Button("Generate Texture")
156
+ image_output = gr.Image(label="Generated Texture")
157
+ model_output = gr.Model3D(label="3D Model with Applied Texture")
158
+
159
+ material_input.change(fn=update_defect_options, inputs=[material_input], outputs=[defect_input])
160
+ generate_button.click(
161
+ fn=lambda material, defect: generate_images(ask_rail_defect_question(f"Describe the texture of {defect} on {material}")),
162
+ inputs=[material_input, defect_input],
163
+ outputs=[image_output]
164
+ )
165
+
166
+ def apply_texture_predefined(image):
167
+ return visualize_dynamic_texture(image, 'right compartments', x_min_range, x_max_range, y_min_range, y_max_range, z_min_range, z_max_range)
168
+
169
+ generate_button.click(
170
+ fn=apply_texture_predefined,
171
+ inputs=[image_output],
172
+ outputs=[model_output]
173
+ )
174
+
175
+ with gr.Tab("Custom Defect Texture"):
176
+ with gr.Row():
177
+ custom_prompt_input = gr.Textbox(label="Enter Custom Prompt for Texture", placeholder="Describe any texture detail you need.")
178
+ refine_button = gr.Button("Refine Prompt")
179
+ refined_prompt_output = gr.Textbox(label="Refined Prompt", placeholder="This will show the refined prompt.")
180
+
181
+ with gr.Row():
182
+ generate_button = gr.Button("Generate Texture")
183
+ custom_image_output = gr.Image(label="Generated Texture")
184
+ model_output_custom = gr.Model3D(label="3D Model with Applied Texture")
185
+
186
+ # Refine the input prompt
187
+ refine_button.click(
188
+ fn=lambda prompt: ask_rail_defect_question(prompt),
189
+ inputs=[custom_prompt_input],
190
+ outputs=[refined_prompt_output]
191
+ )
192
+
193
+ # Use the refined prompt to generate the texture image
194
+ generate_button.click(
195
+ fn=lambda prompt: generate_images(prompt),
196
+ inputs=[refined_prompt_output],
197
+ outputs=[custom_image_output]
198
+ )
199
+
200
+ def apply_texture_custom(image):
201
+ return visualize_dynamic_texture(image, 'custom', x_min_range, x_max_range, y_min_range, y_max_range, z_min_range, z_max_range)
202
+
203
+ generate_button.click(
204
+ fn=apply_texture_custom,
205
+ inputs=[custom_image_output],
206
+ outputs=[model_output_custom]
207
+ )
208
+
209
+ with gr.Tab("Inpaint Defect Texture"):
210
+ with gr.Row():
211
+ image_input = gr.Image(label="Upload Image for Inpainting")
212
+ inpaint_prompt_input = gr.Textbox(label="Enter Prompt for Texture Inpainting")
213
+ inpaint_button = gr.Button("Generate Inpainted Texture")
214
+ inpaint_image_output = gr.Image(label="Generated Inpainted Texture")
215
+ model_output_inpaint = gr.Model3D(label="3D Model with Applied Texture")
216
 
217
+ # Use the images and prompt to generate the inpainted texture image
218
+ inpaint_button.click(
219
+ fn=lambda img, prompt: inpaint_texture(img, prompt),
220
+ inputs=[image_input, inpaint_prompt_input],
221
+ outputs=[inpaint_image_output]
222
+ )
223
 
224
+ def apply_texture_inpaint(image):
225
+ return visualize_dynamic_texture(image, 'right compartments', x_min_range, x_max_range, y_min_range, y_max_range, z_min_range, z_max_range)
226
+
227
+ inpaint_button.click(
228
+ fn=apply_texture_inpaint,
229
+ inputs=[inpaint_image_output],
230
+ outputs=[model_output_inpaint]
231
+ )
232
 
233
+ with gr.Tab("2D Defect Simulator"):
234
+ with gr.Tabs():
235
+ with gr.Tab("Current Defects"):
236
+ with gr.Row():
237
+ prompt_input = gr.Dropdown(choices=predefined_defects, label="Select a prompt")
238
+ number_input_dropdown = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10)
239
+ submit_button_dropdown = gr.Button("Generate")
240
+ image_outputs_dropdown = gr.Gallery()
241
 
242
+ def on_submit_click_dropdown(prompt, number_of_images):
243
+ images = process_railway_defects(prompt, number_of_images)
244
+ return images
245
 
246
+ submit_button_dropdown.click(
247
+ fn=on_submit_click_dropdown,
248
+ inputs=[prompt_input, number_input_dropdown],
249
+ outputs=image_outputs_dropdown
250
+ )
251
 
252
+ with gr.Tab("Custom Defect"):
253
+ with gr.Row():
254
+ custom_prompt_input = gr.Textbox(label="Custom Defect")
255
+ number_input_custom = gr.Number(label="Number of images to generate", value=1, minimum=1, maximum=10)
256
+ submit_button_custom = gr.Button("Generate")
257
+ image_outputs_custom = gr.Gallery()
258
 
259
+ def on_submit_click_custom(custom_prompt, number_of_images):
260
+ images = process_railway_defects(custom_prompt, number_of_images)
261
+ return images
262
 
263
+ submit_button_custom.click(
264
+ fn=on_submit_click_custom,
265
+ inputs=[custom_prompt_input, number_input_custom],
266
+ outputs=image_outputs_custom
267
+ )
268
 
269
+ app.launch()