Rahatara commited on
Commit
0fe504c
·
verified ·
1 Parent(s): 789e236

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +231 -0
app.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import replicate
3
+ import openai
4
+ import trimesh
5
+ import numpy as np
6
+ from PIL import Image
7
+ import requests
8
+ import io
9
+ import tempfile
10
+
11
+ # Set API tokens
12
+ os.environ["REPLICATE_API_TOKEN"] = "r8_Pc64F8EPrJ6PiNIIvaBUZcOGmiLC3Jp1gELYB"
13
+ OPENAI_API_KEY = "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"
14
+
15
+ # Initialize the Replicate client
16
+ rep_client = replicate.Client()
17
+
18
+ # Material defects structure
19
+ material_defects = {
20
+ "Steel": ["Rust and Corrosion", "Pitting Corrosion", "Surface Cracks", "Wear Patterns", "Spalling", "Scaling"],
21
+ "Glass": ["Cracks", "Chips", "Scratches", "Frosting"],
22
+ "Aluminum": ["Corrosion", "Scratches and Dents", "Anodizing Wear"],
23
+ "Wood": ["Rot and Decay", "Cracks and Splits", "Weathering"],
24
+ "Plastics and Polymers": ["Cracking and Crazing", "UV Degradation", "Heat Distortion"],
25
+ "Rubber": ["Cracking", "Hardening and Brittleness", "Surface Wear"],
26
+ "Composite Materials": ["Delamination", "Impact Damage", "Fiber Wearing"],
27
+ "Ceramics": ["Crackling", "Chipping and Pitting", "Glaze Deterioration"]
28
+ }
29
+
30
+ # Function to ask rail defect question
31
+ def ask_rail_defect_question(question, model_name='ft:gpt-3.5-turbo-0125:personal::99NsSAeQ'):
32
+ structured_prompt = f"Translate the following user input into a concise, detailed visual description for a 3D model based on this input: '{question}'. Focus only on the defect’s appearance, texture qualities, and visual effects it would have on the material. Start the description directly with no extra words."
33
+ response = openai.ChatCompletion.create(
34
+ model=model_name,
35
+ messages=[
36
+ {"role": "system", "content": "Provide a concise, detailed visual description of the material's defect texture, focusing on visual and tactile qualities. Do not include any additional context or introductory phrases. Imagine the textures on railway components, but describe only the texture and material."},
37
+ {"role": "user", "content": structured_prompt}
38
+ ],
39
+ )
40
+ refined_description = response.choices[0].message['content']
41
+ return refined_description.strip()
42
+
43
+ # Function to generate images from prompts
44
+ def generate_images(prompt):
45
+ prediction = rep_client.predictions.create(
46
+ version="ac732df83cea7fff18b8472768c88ad041fa750ff7682a21affe81863cbe77e",
47
+ input={"prompt": prompt}
48
+ )
49
+ prediction.wait()
50
+ if prediction.status == "succeeded":
51
+ image_url = prediction.output[0]
52
+ response = requests.get(image_url)
53
+ image = Image.open(io.BytesIO(response.content))
54
+ return image
55
+ return "Failed to generate texture image"
56
+
57
+ # Function to create data URL from PIL image
58
+ def image_to_data_url(pil_image):
59
+ buffered = io.BytesIO()
60
+ pil_image.save(buffered, format="JPEG")
61
+ base64_image = base64.b64encode(buffered.getvalue()).decode('utf-8')
62
+ return f"data:image/jpeg;base64,{base64_image}"
63
+
64
+ # Function to inpaint images
65
+ def inpaint_texture(image, prompt):
66
+ if isinstance(image, np.ndarray):
67
+ image = Image.fromarray(image)
68
+
69
+ image_data_url = image_to_data_url(image)
70
+
71
+ input = {
72
+ "image": image_data_url,
73
+ "prompt": prompt,
74
+ "scheduler": "K_EULER_ANCESTRAL",
75
+ "num_outputs": 1,
76
+ "guidance_scale": 7.5,
77
+ "num_inference_steps": 100,
78
+ "image_guidance_scale": 1.5
79
+ }
80
+
81
+ prediction = rep_client.predictions.create(
82
+ version="30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f",
83
+ input = input
84
+ )
85
+ prediction.wait()
86
+ if prediction.status == "succeeded":
87
+ image_url = prediction.output[0]
88
+ response = requests.get(image_url)
89
+ image = Image.open(io.BytesIO(response.content))
90
+ return image
91
+ return "Failed to generate inpainted texture image"
92
+
93
+ # Function to update defect options
94
+ def update_defect_options(selected_material):
95
+ return gr.update(value='', choices=material_defects[selected_material])
96
+
97
+ # Function to visualize texture based on selection criteria
98
+ def visualize_dynamic_texture(predefined_section, x_min, x_max, y_min, y_max, z_min, z_max, custom_texture_path):
99
+ # Load the original mesh
100
+ mesh = trimesh.load('train.glb', force='mesh')
101
+ custom_texture = Image.open(custom_texture_path).convert('RGB')
102
+
103
+ # Predefined sections
104
+ if predefined_section == 'right compartments':
105
+ selected_indices = np.where(mesh.vertices[:, 0] > (train_bounds[0][0] + train_bounds[1][0]) / 2)[0]
106
+ elif predefined_section == 'left compartments':
107
+ selected_indices = np.where(mesh.vertices[:, 0] <= (train_bounds[0][0] + train_bounds[1][0]) / 2)[0]
108
+ elif predefined_section == 'freight_body':
109
+ selected_indices = np.where((mesh.vertices[:, 0] >= train_bounds[0][0]) & (mesh.vertices[:, 0] <= train_bounds[1][0]) &
110
+ (mesh.vertices[:, 2] <= (train_bounds[0][2] + train_bounds[1][2]) / 2))[0]
111
+ elif predefined_section == 'custom':
112
+ # Use custom sliders for custom section
113
+ selected_indices = np.where((mesh.vertices[:, 0] >= x_min) & (mesh.vertices[:, 0] <= x_max) &
114
+ (mesh.vertices[:, 1] >= y_min) & (mesh.vertices[:, 1] <= y_max) &
115
+ (mesh.vertices[:, 2] >= z_min) & (mesh.vertices[:, 2] <= z_max))[0]
116
+ else:
117
+ selected_indices = np.array([])
118
+
119
+ # Initialize UV mapping
120
+ uv = np.random.rand(len(mesh.vertices), 2)
121
+ new_uv = np.zeros_like(uv)
122
+ new_uv[selected_indices, :] = uv[selected_indices, :]
123
+
124
+ # Create material and apply the new texture
125
+ material = trimesh.visual.texture.SimpleMaterial(image=custom_texture)
126
+ color_visuals = trimesh.visual.TextureVisuals(uv=new_uv, image=custom_texture, material=material)
127
+ textured_mesh = trimesh.Trimesh(vertices=mesh.vertices, faces=mesh.faces, visual=color_visuals, validate=True, process=False)
128
+
129
+ # Save the mesh to a temporary file
130
+ temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.glb')
131
+ textured_mesh.export(temp_file.name, file_type='glb')
132
+ temp_file.close()
133
+ return temp_file.name
134
+
135
+ # Load train model to establish bounding box ranges
136
+ train_model = trimesh.load('train.glb', force='mesh')
137
+ train_bounds = train_model.bounds
138
+
139
+ # Get slider ranges based on train model bounds
140
+ x_min_range, x_max_range = train_bounds[0][0], train_bounds[1][0]
141
+ y_min_range, y_max_range = train_bounds[0][1], train_bounds[1][1]
142
+ z_min_range, z_max_range = train_bounds[0][2], train_bounds[1][2]
143
+
144
+ # Gradio app interface setup
145
+ with gr.Blocks() as app:
146
+ with gr.Tabs():
147
+ with gr.Tab("3D Defect Simulator"):
148
+ with gr.Tabs():
149
+ with gr.Tab("Predefined Defect Texture"):
150
+ with gr.Row():
151
+ material_input = gr.Dropdown(choices=list(material_defects.keys()), label="Select Material")
152
+ defect_input = gr.Dropdown(choices=[], label="Select Defect Type")
153
+ generate_button = gr.Button("Generate Texture")
154
+ image_output = gr.Image(label="Generated Texture")
155
+
156
+ material_input.change(fn=update_defect_options, inputs=[material_input], outputs=[defect_input])
157
+ generate_button.click(
158
+ fn=lambda material, defect: generate_images(ask_rail_defect_question(f"Describe the texture of {defect} on {material}")),
159
+ inputs=[material_input, defect_input],
160
+ outputs=[image_output]
161
+ )
162
+
163
+ with gr.Tab("Custom Defect Texture"):
164
+ with gr.Row():
165
+ custom_prompt_input = gr.Textbox(label="Enter Custom Prompt for Texture", placeholder="Describe any texture detail you need.")
166
+ refine_button = gr.Button("Refine Prompt")
167
+ refined_prompt_output = gr.Textbox(label="Refined Prompt", placeholder="This will show the refined prompt.")
168
+
169
+ with gr.Row():
170
+ generate_button = gr.Button("Generate Texture")
171
+ custom_image_output = gr.Image(label="Generated Texture")
172
+
173
+ # Refine the input prompt
174
+ refine_button.click(
175
+ fn=lambda prompt: ask_rail_defect_question(prompt),
176
+ inputs=[custom_prompt_input],
177
+ outputs=[refined_prompt_output]
178
+ )
179
+
180
+ # Use the refined prompt to generate the texture image
181
+ generate_button.click(
182
+ fn=lambda prompt: generate_images(prompt),
183
+ inputs=[refined_prompt_output],
184
+ outputs=[custom_image_output]
185
+ )
186
+
187
+ with gr.Tab("Inpaint Defect Texture"):
188
+ with gr.Row():
189
+ image_input = gr.Image(label="Upload Image for Inpainting")
190
+ inpaint_prompt_input = gr.Textbox(label="Enter Prompt for Texture Inpainting")
191
+ inpaint_button = gr.Button("Generate Inpainted Texture")
192
+ inpaint_image_output = gr.Image(label="Generated Inpainted Texture")
193
+
194
+ # Use the images and prompt to generate the inpainted texture image
195
+ inpaint_button.click(
196
+ fn=lambda img, prompt: inpaint_texture(img, prompt),
197
+ inputs=[image_input, inpaint_prompt_input],
198
+ outputs=[inpaint_image_output]
199
+ )
200
+
201
+ with gr.Tab("Apply Custom Texture"):
202
+ with gr.Row():
203
+ predefined_section = gr.Radio(choices=['right compartments', 'left compartments', 'freight_body', 'custom'], label="Select Section", value='custom')
204
+ custom_texture_path = gr.Textbox(label="Path to Custom Texture Image")
205
+
206
+ with gr.Row(visible=True) as custom_controls:
207
+ x_min_slider = gr.Slider(minimum=x_min_range, maximum=x_max_range, step=0.01, label="X Min", value=x_min_range)
208
+ x_max_slider = gr.Slider(minimum=x_min_range, maximum=x_max_range, step=0.01, label="X Max", value=x_max_range)
209
+
210
+ y_min_slider = gr.Slider(minimum=y_min_range, maximum=y_max_range, step=0.01, label="Y Min", value=y_min_range)
211
+ y_max_slider = gr.Slider(minimum=y_min_range, maximum=y_max_range, step=0.01, label="Y Max", value=y_max_range)
212
+
213
+ z_min_slider = gr.Slider(minimum=z_min_range, maximum=z_max_range, step=0.01, label="Z Min", value=z_min_range)
214
+ z_max_slider = gr.Slider(minimum=z_min_range, maximum=z_max_range, step=0.01, label="Z Max", value=z_max_range)
215
+
216
+ # Toggle visibility of custom controls
217
+ def toggle_custom_controls(predefined_section):
218
+ return gr.update(visible=(predefined_section == 'custom'))
219
+
220
+ predefined_section.change(fn=toggle_custom_controls, inputs=[predefined_section], outputs=custom_controls)
221
+
222
+ # Update model dynamically
223
+ def update_model(predefined_section, x_min, x_max, y_min, y_max, z_min, z_max, custom_texture_path):
224
+ return visualize_dynamic_texture(predefined_section, x_min, x_max, y_min, y_max, z_min, z_max, custom_texture_path)
225
+
226
+ # Add event listeners for real-time updates when sliders or dropdown change
227
+ inputs = [predefined_section, x_min_slider, x_max_slider, y_min_slider, y_max_slider, z_min_slider, z_max_slider, custom_texture_path]
228
+ for input_component in inputs:
229
+ input_component.change(fn=update_model, inputs=inputs, outputs=modified_model)
230
+
231
+ app.launch()