Spaces:
Running
on
Zero
Running
on
Zero
pre load pipeline pipe_class
Browse files- check_app.py +19 -17
check_app.py
CHANGED
@@ -22,7 +22,7 @@ from datetime import datetime
|
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1024
|
24 |
|
25 |
-
|
26 |
|
27 |
class ProgressPipeline(DiffusionPipeline):
|
28 |
def __init__(self, original_pipeline):
|
@@ -180,24 +180,26 @@ def create_pipeline_logic(prompt_text, model_name, negative_prompt="", seed=42,
|
|
180 |
progress = gr.Progress(track_tqdm=False)
|
181 |
config = MODEL_CONFIGS[model_name]
|
182 |
pipe_class = config["pipeline_class"]
|
183 |
-
pipe
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
198 |
|
199 |
gen_seed,image, images = generate_image_with_progress(
|
200 |
-
model_name,pipe, prompt_text, num_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed,negative_prompt = negative_prompt, randomize_seed = randomize_seed, width = width, height = height, progress=progress
|
201 |
)
|
202 |
return f"Seed: {gen_seed}", image, images
|
203 |
def main():
|
|
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1024
|
24 |
|
25 |
+
pipe = {}
|
26 |
|
27 |
class ProgressPipeline(DiffusionPipeline):
|
28 |
def __init__(self, original_pipeline):
|
|
|
180 |
progress = gr.Progress(track_tqdm=False)
|
181 |
config = MODEL_CONFIGS[model_name]
|
182 |
pipe_class = config["pipeline_class"]
|
183 |
+
global pipe
|
184 |
+
if ["pipeline_class"] != pipe_class
|
185 |
+
pipe["pipeline_class"] = pipe_class
|
186 |
+
b_pipe = AutoPipelineForText2Image.from_pretrained(
|
187 |
+
config["repo_id"],
|
188 |
+
#variant="fp16",
|
189 |
+
#cache_dir=config["cache_dir"],
|
190 |
+
torch_dtype=torch.bfloat16
|
191 |
+
).to("cuda")
|
192 |
+
pipe_signature = signature(b_pipe)
|
193 |
+
# Check for the presence of "callback_on_step_end" in the signature
|
194 |
+
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters
|
195 |
+
if not has_callback_on_step_end:
|
196 |
+
pipe["pipeline"] = ProgressPipeline(b_pipe)
|
197 |
+
print("ProgressPipeline specal")
|
198 |
+
else:
|
199 |
+
pipe["pipeline"] = b_pipe
|
200 |
|
201 |
gen_seed,image, images = generate_image_with_progress(
|
202 |
+
model_name,pipe["pipeline"], prompt_text, num_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed,negative_prompt = negative_prompt, randomize_seed = randomize_seed, width = width, height = height, progress=progress
|
203 |
)
|
204 |
return f"Seed: {gen_seed}", image, images
|
205 |
def main():
|