RageshAntony's picture
start_process
a554d27 verified
raw
history blame
4.03 kB
import spaces
import torch
from diffusers import (
FluxPipeline,
StableDiffusion3Pipeline,
PixArtSigmaPipeline,
SanaPipeline,
AuraFlowPipeline,
Kandinsky3Pipeline,
HunyuanDiTPipeline,
LuminaText2ImgPipeline
)
import gradio as gr
cache_dir = '/workspace/hf_cache'
MODEL_CONFIGS = {
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": FluxPipeline,
"cache_dir": cache_dir,
},
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": StableDiffusion3Pipeline,
"cache_dir": cache_dir,
},
"PixArt": {
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
"pipeline_class": PixArtSigmaPipeline,
"cache_dir": cache_dir,
},
"SANA": {
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
"pipeline_class": SanaPipeline,
"cache_dir": cache_dir,
},
"AuraFlow": {
"repo_id": "fal/AuraFlow",
"pipeline_class": AuraFlowPipeline,
"cache_dir": cache_dir,
},
"Kandinsky": {
"repo_id": "kandinsky-community/kandinsky-3",
"pipeline_class": Kandinsky3Pipeline,
"cache_dir": cache_dir,
},
"Hunyuan": {
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers",
"pipeline_class": HunyuanDiTPipeline,
"cache_dir": cache_dir,
},
"Lumina": {
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers",
"pipeline_class": LuminaText2ImgPipeline,
"cache_dir": cache_dir,
}
}
def generate_image_with_progress(pipe, prompt, num_steps, guidance_scale=None, seed=None, progress=gr.Progress()):
generator = None
if seed is not None:
generator = torch.Generator("cuda").manual_seed(seed)
def callback(pipe, step_index, timestep, callback_kwargs):
print(f" callback => {pipe}, {step_index}, {timestep}")
if step_index is None:
step_index = 0
cur_prg = step_index / num_steps
progress(cur_prg, desc=f"Step {step_index}/{num_steps}")
return callback_kwargs
if hasattr(pipe, "guidance_scale"):
image = pipe(
prompt,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
callback_on_step_end=callback,
).images[0]
else:
image = pipe(
prompt,
num_inference_steps=num_steps,
generator=generator,
output_type="pil",
callback_on_step_end=callback,
).images[0]
return image
@spaces.GPU(duration=170)
def create_pipeline_logic(model_name, config):
def start_process(prompt_text):
print(f"starting {model_name}")
progress = gr.Progress()
num_steps = 30
guidance_scale = 7.5 # Example guidance scale, can be adjusted per model
seed = 42
pipe_class = config["pipeline_class"]
pipe = pipe_class.from_pretrained(
config["repo_id"],
#cache_dir=config["cache_dir"],
torch_dtype=torch.bfloat16
).to("cuda")
image = generate_image_with_progress(
pipe, prompt_text, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, progress=progress
)
return f"Seed: {seed}", image
return start_process
def main():
with gr.Blocks() as app:
gr.Markdown("# Dynamic Multiple Model Image Generation")
prompt_text = gr.Textbox(label="Enter prompt")
for model_name, config in MODEL_CONFIGS.items():
with gr.Tab(model_name):
button = gr.Button(f"Run {model_name}")
output = gr.Textbox(label="Status")
img = gr.Image(label=model_name, height=300)
start_process = create_pipeline_logic(model_name, config)
button.click(fn=start_process, inputs=[prompt_text], outputs=[output, img])
app.launch()
if __name__ == "__main__":
main()