Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,954 Bytes
6e5e1d5 fe79ce9 02919e4 0e6b892 02919e4 a8c6b1a 80e6066 fe79ce9 6e5e1d5 02919e4 6e5e1d5 fe79ce9 80e6066 02919e4 fe79ce9 02919e4 a69d563 02919e4 6e5e1d5 fe79ce9 a8c6b1a fe79ce9 a8c6b1a fe79ce9 a8c6b1a fe79ce9 02919e4 fe79ce9 02919e4 a8c6b1a fe79ce9 a8c6b1a 02919e4 80e6066 fe79ce9 80e6066 fe79ce9 a8c6b1a fe79ce9 b4ca06e fe79ce9 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 fe79ce9 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 6e5e1d5 02919e4 80e6066 02919e4 80e6066 a8c6b1a 02919e4 6e5e1d5 02919e4 6e5e1d5 80e6066 6e5e1d5 fe79ce9 02919e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
import numpy as np
import random
import torch
import torch.multiprocessing as mp
from torch.cuda.amp import autocast
from diffusers import (
DiffusionPipeline, StableDiffusion3Pipeline, FluxPipeline, PixArtSigmaPipeline,
AuraFlowPipeline, Kandinsky3Pipeline, HunyuanDiTPipeline,
LuminaText2ImgPipeline
)
import spaces
import gc
import os
import psutil
import threading
from pathlib import Path
import shutil
import time
import glob
from datetime import datetime
from PIL import Image
from queue import Queue
from concurrent.futures import ThreadPoolExecutor, as_completed
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
TORCH_DTYPE = torch.bfloat16
OUTPUT_DIR = "generated_images"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Get available GPU devices
AVAILABLE_GPUS = list(range(torch.cuda.device_count()))
print(f"Available GPUs: {AVAILABLE_GPUS}")
# Model configurations
MODEL_CONFIGS = {
"FLUX": {
"repo_id": "black-forest-labs/FLUX.1-dev",
"pipeline_class": FluxPipeline
},
"Stable Diffusion 3.5": {
"repo_id": "stabilityai/stable-diffusion-3.5-large",
"pipeline_class": StableDiffusion3Pipeline
}
}
# GPU allocation queue and model cache
gpu_queue = Queue()
for gpu_id in AVAILABLE_GPUS:
gpu_queue.put(gpu_id)
model_cache = {}
model_locks = {model_name: threading.Lock() for model_name in MODEL_CONFIGS.keys()}
def get_next_available_gpu():
"""Get the next available GPU from the queue"""
gpu_id = gpu_queue.get()
return gpu_id
def release_gpu(gpu_id):
"""Release GPU back to the queue"""
gpu_queue.put(gpu_id)
def load_pipeline_on_gpu(model_name, gpu_id):
"""Load model pipeline on specific GPU with memory tracking"""
config = MODEL_CONFIGS[model_name]
with torch.cuda.device(gpu_id):
pipe = config["pipeline_class"].from_pretrained(
config["repo_id"],
torch_dtype=TORCH_DTYPE
)
pipe = pipe.to(f"cuda:{gpu_id}")
if hasattr(pipe, 'enable_model_cpu_offload'):
pipe.enable_model_cpu_offload()
return pipe
def save_generated_image(image, model_name, prompt):
"""Save generated image with timestamp and model name"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
prompt_part = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip()
filename = f"{timestamp}_{model_name}_{prompt_part}.png"
filepath = os.path.join(OUTPUT_DIR, filename)
image.save(filepath)
return filepath
def get_generated_images():
"""Get list of generated images with their details"""
files = glob.glob(os.path.join(OUTPUT_DIR, "*.png"))
files.sort(key=os.path.getctime, reverse=True)
return [
{
"path": f,
"name": os.path.basename(f),
"date": datetime.fromtimestamp(os.path.getctime(f)).strftime("%Y-%m-%d %H:%M:%S"),
"size": f"{os.path.getsize(f) / 1024:.1f} KB"
}
for f in files
]
def generate_image_on_gpu(args):
"""Generate image on specific GPU"""
model_name, prompt, negative_prompt, seed, width, height, guidance_scale, num_inference_steps = args
try:
gpu_id = get_next_available_gpu()
print(f"Generating {model_name} on GPU {gpu_id}")
# Load or get cached pipeline
cache_key = f"{model_name}_{gpu_id}"
if cache_key not in model_cache:
with model_locks[model_name]:
model_cache[cache_key] = load_pipeline_on_gpu(model_name, gpu_id)
pipe = model_cache[cache_key]
# Generate image
with torch.cuda.device(gpu_id), autocast():
generator = torch.Generator(f"cuda:{gpu_id}").manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
filepath = save_generated_image(image, model_name, prompt)
print(f"Saved image from {model_name} to: {filepath}")
release_gpu(gpu_id)
return image, seed
except Exception as e:
print(f"Error with {model_name} on GPU {gpu_id}: {str(e)}")
release_gpu(gpu_id)
raise e
@spaces.GPU(duration=400)
def generate_all(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress()):
outputs = [None] * (len(MODEL_CONFIGS) * 2)
# Prepare generation tasks
tasks = []
for model_name in MODEL_CONFIGS.keys():
current_seed = random.randint(0, MAX_SEED) if randomize_seed else seed
tasks.append((
model_name, prompt, negative_prompt, current_seed,
width, height, guidance_scale, num_inference_steps
))
# Run generation in parallel using thread pool
with ThreadPoolExecutor(max_workers=len(AVAILABLE_GPUS)) as executor:
future_to_model = {
executor.submit(generate_image_on_gpu, task): idx
for idx, task in enumerate(tasks)
}
for future in as_completed(future_to_model):
idx = future_to_model[future]
try:
image, used_seed = future.result()
outputs[idx * 2] = image
outputs[idx * 2 + 1] = used_seed
yield outputs + [None]
except Exception as e:
print(f"Generation failed for model {idx}: {str(e)}")
outputs[idx * 2] = None
outputs[idx * 2 + 1] = None
# Update gallery after all generations complete
gallery_images = update_gallery()
return outputs
# Gradio Interface
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"# Multi-GPU Image Generation ({len(AVAILABLE_GPUS)} GPUs Available)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs() as tabs:
results = {}
seeds = {}
for model_name in MODEL_CONFIGS.keys():
with gr.Tab(model_name):
results[model_name] = gr.Image(label=f"{model_name} Result")
seeds[model_name] = gr.Number(label="Seed used", visible=False)
with gr.Column(scale=1):
gr.Markdown("### Generated Images")
file_gallery = gr.Gallery(
label="Generated Images",
show_label=False,
elem_id="file_gallery",
columns=2,
height=400
)
refresh_button = gr.Button("Refresh Gallery")
def update_gallery():
"""Update the file gallery"""
files = get_generated_images()
return [
(f["path"], f"{f['name']}\n{f['date']}")
for f in files
]
output_components = []
for model_name in MODEL_CONFIGS.keys():
output_components.extend([results[model_name], seeds[model_name]])
run_button.click(
fn=generate_all,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=output_components,
)
refresh_button.click(
fn=update_gallery,
inputs=[],
outputs=[file_gallery],
)
demo.load(
fn=update_gallery,
inputs=[],
outputs=[file_gallery],
)
if __name__ == "__main__":
# Initialize multiprocessing for PyTorch
mp.set_start_method('spawn', force=True)
demo.launch() |