Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
hyvideo/diffusion/schedulers/__init__.py
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
from .scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
|
|
|
|
| 1 |
+
from .scheduling_flow_match_discrete import FlowMatchDiscreteScheduler
|
hyvideo/diffusion/schedulers/scheduling_flow_match_discrete.py
CHANGED
|
@@ -1,257 +1,257 @@
|
|
| 1 |
-
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
# ==============================================================================
|
| 15 |
-
#
|
| 16 |
-
# Modified from diffusers==0.29.2
|
| 17 |
-
#
|
| 18 |
-
# ==============================================================================
|
| 19 |
-
|
| 20 |
-
from dataclasses import dataclass
|
| 21 |
-
from typing import Optional, Tuple, Union
|
| 22 |
-
|
| 23 |
-
import numpy as np
|
| 24 |
-
import torch
|
| 25 |
-
|
| 26 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 27 |
-
from diffusers.utils import BaseOutput, logging
|
| 28 |
-
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
@dataclass
|
| 35 |
-
class FlowMatchDiscreteSchedulerOutput(BaseOutput):
|
| 36 |
-
"""
|
| 37 |
-
Output class for the scheduler's `step` function output.
|
| 38 |
-
|
| 39 |
-
Args:
|
| 40 |
-
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 41 |
-
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 42 |
-
denoising loop.
|
| 43 |
-
"""
|
| 44 |
-
|
| 45 |
-
prev_sample: torch.FloatTensor
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
class FlowMatchDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
| 49 |
-
"""
|
| 50 |
-
Euler scheduler.
|
| 51 |
-
|
| 52 |
-
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 53 |
-
methods the library implements for all schedulers such as loading and saving.
|
| 54 |
-
|
| 55 |
-
Args:
|
| 56 |
-
num_train_timesteps (`int`, defaults to 1000):
|
| 57 |
-
The number of diffusion steps to train the model.
|
| 58 |
-
timestep_spacing (`str`, defaults to `"linspace"`):
|
| 59 |
-
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
| 60 |
-
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
| 61 |
-
shift (`float`, defaults to 1.0):
|
| 62 |
-
The shift value for the timestep schedule.
|
| 63 |
-
reverse (`bool`, defaults to `True`):
|
| 64 |
-
Whether to reverse the timestep schedule.
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
_compatibles = []
|
| 68 |
-
order = 1
|
| 69 |
-
|
| 70 |
-
@register_to_config
|
| 71 |
-
def __init__(
|
| 72 |
-
self,
|
| 73 |
-
num_train_timesteps: int = 1000,
|
| 74 |
-
shift: float = 1.0,
|
| 75 |
-
reverse: bool = True,
|
| 76 |
-
solver: str = "euler",
|
| 77 |
-
n_tokens: Optional[int] = None,
|
| 78 |
-
):
|
| 79 |
-
sigmas = torch.linspace(1, 0, num_train_timesteps + 1)
|
| 80 |
-
|
| 81 |
-
if not reverse:
|
| 82 |
-
sigmas = sigmas.flip(0)
|
| 83 |
-
|
| 84 |
-
self.sigmas = sigmas
|
| 85 |
-
# the value fed to model
|
| 86 |
-
self.timesteps = (sigmas[:-1] * num_train_timesteps).to(dtype=torch.float32)
|
| 87 |
-
|
| 88 |
-
self._step_index = None
|
| 89 |
-
self._begin_index = None
|
| 90 |
-
|
| 91 |
-
self.supported_solver = ["euler"]
|
| 92 |
-
if solver not in self.supported_solver:
|
| 93 |
-
raise ValueError(
|
| 94 |
-
f"Solver {solver} not supported. Supported solvers: {self.supported_solver}"
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
@property
|
| 98 |
-
def step_index(self):
|
| 99 |
-
"""
|
| 100 |
-
The index counter for current timestep. It will increase 1 after each scheduler step.
|
| 101 |
-
"""
|
| 102 |
-
return self._step_index
|
| 103 |
-
|
| 104 |
-
@property
|
| 105 |
-
def begin_index(self):
|
| 106 |
-
"""
|
| 107 |
-
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
| 108 |
-
"""
|
| 109 |
-
return self._begin_index
|
| 110 |
-
|
| 111 |
-
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
| 112 |
-
def set_begin_index(self, begin_index: int = 0):
|
| 113 |
-
"""
|
| 114 |
-
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
| 115 |
-
|
| 116 |
-
Args:
|
| 117 |
-
begin_index (`int`):
|
| 118 |
-
The begin index for the scheduler.
|
| 119 |
-
"""
|
| 120 |
-
self._begin_index = begin_index
|
| 121 |
-
|
| 122 |
-
def _sigma_to_t(self, sigma):
|
| 123 |
-
return sigma * self.config.num_train_timesteps
|
| 124 |
-
|
| 125 |
-
def set_timesteps(
|
| 126 |
-
self,
|
| 127 |
-
num_inference_steps: int,
|
| 128 |
-
device: Union[str, torch.device] = None,
|
| 129 |
-
n_tokens: int = None,
|
| 130 |
-
):
|
| 131 |
-
"""
|
| 132 |
-
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
| 133 |
-
|
| 134 |
-
Args:
|
| 135 |
-
num_inference_steps (`int`):
|
| 136 |
-
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 137 |
-
device (`str` or `torch.device`, *optional*):
|
| 138 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 139 |
-
n_tokens (`int`, *optional*):
|
| 140 |
-
Number of tokens in the input sequence.
|
| 141 |
-
"""
|
| 142 |
-
self.num_inference_steps = num_inference_steps
|
| 143 |
-
|
| 144 |
-
sigmas = torch.linspace(1, 0, num_inference_steps + 1)
|
| 145 |
-
sigmas = self.sd3_time_shift(sigmas)
|
| 146 |
-
|
| 147 |
-
if not self.config.reverse:
|
| 148 |
-
sigmas = 1 - sigmas
|
| 149 |
-
|
| 150 |
-
self.sigmas = sigmas
|
| 151 |
-
self.timesteps = (sigmas[:-1] * self.config.num_train_timesteps).to(
|
| 152 |
-
dtype=torch.float32, device=device
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
# Reset step index
|
| 156 |
-
self._step_index = None
|
| 157 |
-
|
| 158 |
-
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 159 |
-
if schedule_timesteps is None:
|
| 160 |
-
schedule_timesteps = self.timesteps
|
| 161 |
-
|
| 162 |
-
indices = (schedule_timesteps == timestep).nonzero()
|
| 163 |
-
|
| 164 |
-
# The sigma index that is taken for the **very** first `step`
|
| 165 |
-
# is always the second index (or the last index if there is only 1)
|
| 166 |
-
# This way we can ensure we don't accidentally skip a sigma in
|
| 167 |
-
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
| 168 |
-
pos = 1 if len(indices) > 1 else 0
|
| 169 |
-
|
| 170 |
-
return indices[pos].item()
|
| 171 |
-
|
| 172 |
-
def _init_step_index(self, timestep):
|
| 173 |
-
if self.begin_index is None:
|
| 174 |
-
if isinstance(timestep, torch.Tensor):
|
| 175 |
-
timestep = timestep.to(self.timesteps.device)
|
| 176 |
-
self._step_index = self.index_for_timestep(timestep)
|
| 177 |
-
else:
|
| 178 |
-
self._step_index = self._begin_index
|
| 179 |
-
|
| 180 |
-
def scale_model_input(
|
| 181 |
-
self, sample: torch.Tensor, timestep: Optional[int] = None
|
| 182 |
-
) -> torch.Tensor:
|
| 183 |
-
return sample
|
| 184 |
-
|
| 185 |
-
def sd3_time_shift(self, t: torch.Tensor):
|
| 186 |
-
return (self.config.shift * t) / (1 + (self.config.shift - 1) * t)
|
| 187 |
-
|
| 188 |
-
def step(
|
| 189 |
-
self,
|
| 190 |
-
model_output: torch.FloatTensor,
|
| 191 |
-
timestep: Union[float, torch.FloatTensor],
|
| 192 |
-
sample: torch.FloatTensor,
|
| 193 |
-
return_dict: bool = True,
|
| 194 |
-
) -> Union[FlowMatchDiscreteSchedulerOutput, Tuple]:
|
| 195 |
-
"""
|
| 196 |
-
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 197 |
-
process from the learned model outputs (most often the predicted noise).
|
| 198 |
-
|
| 199 |
-
Args:
|
| 200 |
-
model_output (`torch.FloatTensor`):
|
| 201 |
-
The direct output from learned diffusion model.
|
| 202 |
-
timestep (`float`):
|
| 203 |
-
The current discrete timestep in the diffusion chain.
|
| 204 |
-
sample (`torch.FloatTensor`):
|
| 205 |
-
A current instance of a sample created by the diffusion process.
|
| 206 |
-
generator (`torch.Generator`, *optional*):
|
| 207 |
-
A random number generator.
|
| 208 |
-
n_tokens (`int`, *optional*):
|
| 209 |
-
Number of tokens in the input sequence.
|
| 210 |
-
return_dict (`bool`):
|
| 211 |
-
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
| 212 |
-
tuple.
|
| 213 |
-
|
| 214 |
-
Returns:
|
| 215 |
-
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
| 216 |
-
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
| 217 |
-
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
| 218 |
-
"""
|
| 219 |
-
|
| 220 |
-
if (
|
| 221 |
-
isinstance(timestep, int)
|
| 222 |
-
or isinstance(timestep, torch.IntTensor)
|
| 223 |
-
or isinstance(timestep, torch.LongTensor)
|
| 224 |
-
):
|
| 225 |
-
raise ValueError(
|
| 226 |
-
(
|
| 227 |
-
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
| 228 |
-
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
| 229 |
-
" one of the `scheduler.timesteps` as a timestep."
|
| 230 |
-
),
|
| 231 |
-
)
|
| 232 |
-
|
| 233 |
-
if self.step_index is None:
|
| 234 |
-
self._init_step_index(timestep)
|
| 235 |
-
|
| 236 |
-
# Upcast to avoid precision issues when computing prev_sample
|
| 237 |
-
sample = sample.to(torch.float32)
|
| 238 |
-
|
| 239 |
-
dt = self.sigmas[self.step_index + 1] - self.sigmas[self.step_index]
|
| 240 |
-
|
| 241 |
-
if self.config.solver == "euler":
|
| 242 |
-
prev_sample = sample + model_output.to(torch.float32) * dt
|
| 243 |
-
else:
|
| 244 |
-
raise ValueError(
|
| 245 |
-
f"Solver {self.config.solver} not supported. Supported solvers: {self.supported_solver}"
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
# upon completion increase step index by one
|
| 249 |
-
self._step_index += 1
|
| 250 |
-
|
| 251 |
-
if not return_dict:
|
| 252 |
-
return (prev_sample,)
|
| 253 |
-
|
| 254 |
-
return FlowMatchDiscreteSchedulerOutput(prev_sample=prev_sample)
|
| 255 |
-
|
| 256 |
-
def __len__(self):
|
| 257 |
-
return self.config.num_train_timesteps
|
|
|
|
| 1 |
+
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
# ==============================================================================
|
| 15 |
+
#
|
| 16 |
+
# Modified from diffusers==0.29.2
|
| 17 |
+
#
|
| 18 |
+
# ==============================================================================
|
| 19 |
+
|
| 20 |
+
from dataclasses import dataclass
|
| 21 |
+
from typing import Optional, Tuple, Union
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
|
| 26 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 27 |
+
from diffusers.utils import BaseOutput, logging
|
| 28 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
@dataclass
|
| 35 |
+
class FlowMatchDiscreteSchedulerOutput(BaseOutput):
|
| 36 |
+
"""
|
| 37 |
+
Output class for the scheduler's `step` function output.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
| 41 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
| 42 |
+
denoising loop.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
prev_sample: torch.FloatTensor
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class FlowMatchDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
| 49 |
+
"""
|
| 50 |
+
Euler scheduler.
|
| 51 |
+
|
| 52 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
| 53 |
+
methods the library implements for all schedulers such as loading and saving.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
num_train_timesteps (`int`, defaults to 1000):
|
| 57 |
+
The number of diffusion steps to train the model.
|
| 58 |
+
timestep_spacing (`str`, defaults to `"linspace"`):
|
| 59 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
| 60 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
| 61 |
+
shift (`float`, defaults to 1.0):
|
| 62 |
+
The shift value for the timestep schedule.
|
| 63 |
+
reverse (`bool`, defaults to `True`):
|
| 64 |
+
Whether to reverse the timestep schedule.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
_compatibles = []
|
| 68 |
+
order = 1
|
| 69 |
+
|
| 70 |
+
@register_to_config
|
| 71 |
+
def __init__(
|
| 72 |
+
self,
|
| 73 |
+
num_train_timesteps: int = 1000,
|
| 74 |
+
shift: float = 1.0,
|
| 75 |
+
reverse: bool = True,
|
| 76 |
+
solver: str = "euler",
|
| 77 |
+
n_tokens: Optional[int] = None,
|
| 78 |
+
):
|
| 79 |
+
sigmas = torch.linspace(1, 0, num_train_timesteps + 1)
|
| 80 |
+
|
| 81 |
+
if not reverse:
|
| 82 |
+
sigmas = sigmas.flip(0)
|
| 83 |
+
|
| 84 |
+
self.sigmas = sigmas
|
| 85 |
+
# the value fed to model
|
| 86 |
+
self.timesteps = (sigmas[:-1] * num_train_timesteps).to(dtype=torch.float32)
|
| 87 |
+
|
| 88 |
+
self._step_index = None
|
| 89 |
+
self._begin_index = None
|
| 90 |
+
|
| 91 |
+
self.supported_solver = ["euler"]
|
| 92 |
+
if solver not in self.supported_solver:
|
| 93 |
+
raise ValueError(
|
| 94 |
+
f"Solver {solver} not supported. Supported solvers: {self.supported_solver}"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
@property
|
| 98 |
+
def step_index(self):
|
| 99 |
+
"""
|
| 100 |
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
| 101 |
+
"""
|
| 102 |
+
return self._step_index
|
| 103 |
+
|
| 104 |
+
@property
|
| 105 |
+
def begin_index(self):
|
| 106 |
+
"""
|
| 107 |
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
| 108 |
+
"""
|
| 109 |
+
return self._begin_index
|
| 110 |
+
|
| 111 |
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
| 112 |
+
def set_begin_index(self, begin_index: int = 0):
|
| 113 |
+
"""
|
| 114 |
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
begin_index (`int`):
|
| 118 |
+
The begin index for the scheduler.
|
| 119 |
+
"""
|
| 120 |
+
self._begin_index = begin_index
|
| 121 |
+
|
| 122 |
+
def _sigma_to_t(self, sigma):
|
| 123 |
+
return sigma * self.config.num_train_timesteps
|
| 124 |
+
|
| 125 |
+
def set_timesteps(
|
| 126 |
+
self,
|
| 127 |
+
num_inference_steps: int,
|
| 128 |
+
device: Union[str, torch.device] = None,
|
| 129 |
+
n_tokens: int = None,
|
| 130 |
+
):
|
| 131 |
+
"""
|
| 132 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
num_inference_steps (`int`):
|
| 136 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
| 137 |
+
device (`str` or `torch.device`, *optional*):
|
| 138 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 139 |
+
n_tokens (`int`, *optional*):
|
| 140 |
+
Number of tokens in the input sequence.
|
| 141 |
+
"""
|
| 142 |
+
self.num_inference_steps = num_inference_steps
|
| 143 |
+
|
| 144 |
+
sigmas = torch.linspace(1, 0, num_inference_steps + 1)
|
| 145 |
+
sigmas = self.sd3_time_shift(sigmas)
|
| 146 |
+
|
| 147 |
+
if not self.config.reverse:
|
| 148 |
+
sigmas = 1 - sigmas
|
| 149 |
+
|
| 150 |
+
self.sigmas = sigmas
|
| 151 |
+
self.timesteps = (sigmas[:-1] * self.config.num_train_timesteps).to(
|
| 152 |
+
dtype=torch.float32, device=device
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
# Reset step index
|
| 156 |
+
self._step_index = None
|
| 157 |
+
|
| 158 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 159 |
+
if schedule_timesteps is None:
|
| 160 |
+
schedule_timesteps = self.timesteps
|
| 161 |
+
|
| 162 |
+
indices = (schedule_timesteps == timestep).nonzero()
|
| 163 |
+
|
| 164 |
+
# The sigma index that is taken for the **very** first `step`
|
| 165 |
+
# is always the second index (or the last index if there is only 1)
|
| 166 |
+
# This way we can ensure we don't accidentally skip a sigma in
|
| 167 |
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
| 168 |
+
pos = 1 if len(indices) > 1 else 0
|
| 169 |
+
|
| 170 |
+
return indices[pos].item()
|
| 171 |
+
|
| 172 |
+
def _init_step_index(self, timestep):
|
| 173 |
+
if self.begin_index is None:
|
| 174 |
+
if isinstance(timestep, torch.Tensor):
|
| 175 |
+
timestep = timestep.to(self.timesteps.device)
|
| 176 |
+
self._step_index = self.index_for_timestep(timestep)
|
| 177 |
+
else:
|
| 178 |
+
self._step_index = self._begin_index
|
| 179 |
+
|
| 180 |
+
def scale_model_input(
|
| 181 |
+
self, sample: torch.Tensor, timestep: Optional[int] = None
|
| 182 |
+
) -> torch.Tensor:
|
| 183 |
+
return sample
|
| 184 |
+
|
| 185 |
+
def sd3_time_shift(self, t: torch.Tensor):
|
| 186 |
+
return (self.config.shift * t) / (1 + (self.config.shift - 1) * t)
|
| 187 |
+
|
| 188 |
+
def step(
|
| 189 |
+
self,
|
| 190 |
+
model_output: torch.FloatTensor,
|
| 191 |
+
timestep: Union[float, torch.FloatTensor],
|
| 192 |
+
sample: torch.FloatTensor,
|
| 193 |
+
return_dict: bool = True,
|
| 194 |
+
) -> Union[FlowMatchDiscreteSchedulerOutput, Tuple]:
|
| 195 |
+
"""
|
| 196 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
| 197 |
+
process from the learned model outputs (most often the predicted noise).
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
model_output (`torch.FloatTensor`):
|
| 201 |
+
The direct output from learned diffusion model.
|
| 202 |
+
timestep (`float`):
|
| 203 |
+
The current discrete timestep in the diffusion chain.
|
| 204 |
+
sample (`torch.FloatTensor`):
|
| 205 |
+
A current instance of a sample created by the diffusion process.
|
| 206 |
+
generator (`torch.Generator`, *optional*):
|
| 207 |
+
A random number generator.
|
| 208 |
+
n_tokens (`int`, *optional*):
|
| 209 |
+
Number of tokens in the input sequence.
|
| 210 |
+
return_dict (`bool`):
|
| 211 |
+
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
| 212 |
+
tuple.
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
| 216 |
+
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
| 217 |
+
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
if (
|
| 221 |
+
isinstance(timestep, int)
|
| 222 |
+
or isinstance(timestep, torch.IntTensor)
|
| 223 |
+
or isinstance(timestep, torch.LongTensor)
|
| 224 |
+
):
|
| 225 |
+
raise ValueError(
|
| 226 |
+
(
|
| 227 |
+
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
| 228 |
+
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
| 229 |
+
" one of the `scheduler.timesteps` as a timestep."
|
| 230 |
+
),
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
if self.step_index is None:
|
| 234 |
+
self._init_step_index(timestep)
|
| 235 |
+
|
| 236 |
+
# Upcast to avoid precision issues when computing prev_sample
|
| 237 |
+
sample = sample.to(torch.float32)
|
| 238 |
+
|
| 239 |
+
dt = self.sigmas[self.step_index + 1] - self.sigmas[self.step_index]
|
| 240 |
+
|
| 241 |
+
if self.config.solver == "euler":
|
| 242 |
+
prev_sample = sample + model_output.to(torch.float32) * dt
|
| 243 |
+
else:
|
| 244 |
+
raise ValueError(
|
| 245 |
+
f"Solver {self.config.solver} not supported. Supported solvers: {self.supported_solver}"
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# upon completion increase step index by one
|
| 249 |
+
self._step_index += 1
|
| 250 |
+
|
| 251 |
+
if not return_dict:
|
| 252 |
+
return (prev_sample,)
|
| 253 |
+
|
| 254 |
+
return FlowMatchDiscreteSchedulerOutput(prev_sample=prev_sample)
|
| 255 |
+
|
| 256 |
+
def __len__(self):
|
| 257 |
+
return self.config.num_train_timesteps
|