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Agenda

• Model Tuning

• Automating the process

• AutoML



Model Tuning



Previous Examples

• Our Previous Examples all used the default settings

• Each Algorithm has their own settings

• These parameters are often called Hyperparameters

• Lots of testing and Experiments have worked out the best settings 
to use.

• These work best for most cases/scenarios

• But may not work best for all cases/scenarios



Model Tuning
• Model Tuning is the process where you try to optimize 

the mode
• By modifying the parameters
• To give a better / more accurate model
• To get better predictions on new data

• Why is this important
• Minor changes can have a big impact
• On € / $  Profit / Loss 
• Or reduce fraud / breakages / better health 

predictions,  etc

• Experimentation is needed
• Evaluate the results to see if they are really useful



Model Tuning

• Some Algorithms have 10+  parameters
• Each parameter can have 10+,  or 100+  possible values

• Search Space becomes huge

• Don’t do it manually!
• Use in-built Functions to do this

• But it will take some time, maybe a long, long, long time



How to do this

• There are 2 main approaches
• Random Grid Search – Randomly select values for parameters from list/range

• Grid Search – Walks through all combinations
• These approaches can be used to find the best combination of Parameters and their Settings

• What’s a Grid?

• It’s a List of Parameters and the Values to be included in the Search
• The Values can be a List of values, or you can give a Range of values

• Or some combination of these
#parameters with a list of values
a1: [0,1,2,3,4,5]
a2: [10,20,30,40,5,60]
a3: [105,105,110,115,120,125]

#parameters with list & range of values
a1: [0,1,2,3,4,5]
a2: list(range(10,60))   #all values between 10 & 60
a3: [105,105,110,115,120,125]



Random Grid Search
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

param_grid = {
'n_estimators': [25, 50, 100, 150],
'max_features': ['sqrt', 'log2', None],
'max_depth': [3, 6, 9],
'max_leaf_nodes': [3, 6, 9],

}

#RandomizedSearchCV will select a Random selection of values for each parameter.
# This might not be suitable as it might miss important values

random_search = RandomizedSearchCV(RandomForestClassifier(),
param_grid)

random_search.fit(X_train, y_train)

# random random search results
print('Best random search hyperparameters are: '+str(random_search.best_params_))
print('Best random search score is: '+str(random_search.best_score_))

Best random search hyperparameters are: {'n_estimators': 25, 'max_leaf_nodes': 9, 
'max_features': 'log2', 'max_depth': 6} 

Best random search score is: 0.8438924650439015 

Check out this webpage for more RandomizedSearchCV details
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html


Grid Search

rfc = RandomForestClassifier()

#GridSearch can take a lot of time!   We will only use these 2 parameters as an example
forest_params = [{'max_depth': list(range(2, 6)), 

'max_features': list(range(3, 8))}]

grid_search = GridSearchCV(rfc, forest_params, cv = 10, scoring='accuracy')

#this next command will take some time!
grid_search.fit(X_train, y_train)

GridSearchCV(cv=10, estimator=RandomForestClassifier(), 
param_grid=forest_params,  scoring='accuracy’)

print('Best hyperparameters are: '+str(grid_search.best_params_))
print('Best score is: '+str(grid_search.best_score_))

Best hyperparameters are: {'max_depth': 5, 'max_features': 6} 
Best score is: 0.853106644958161

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

How does this compare to 
RandomGrid Search?

Can you explain the 
difference?

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


Automating the Process



Why Automate 

• To make you life easier

• To make the job easier

• Allows you to concentrate on the important 
things -> the Business Problem

• No run like boring, repetitive tasks

• Avoid mistakes due to boring, repetitive tasks

• Things can go wrong where there is so many 
different tasks and dependencies between these



How do we automate

• Identify what do we need to do every time
• Can we Automate it in some way

• Writing code is a way to do 
• Creating a Notebook with all steps
• Re-run the Notebook – when we have new data

• Can we really Automate every step?
• Should we automate
• Some legal requirements – See topic later in the semester
• Human oversight is vital

• What happens when the automation goes wrong?



How do we automate
• Document your code
• Document decisions
• Document outcomes
• Document edge cases
• Etc

• Create loops
• Integrate Charts
• Integrate Results
• Format the Outputs
• Make it easier to following and to understand

• How hands free can you be
• Create time to focus on Business Problem

Time for 
an 

Example



AutoML



Automate the Boring Stuff

• We have seen examples of Automation before
• Data Exploration

• Graphs for Data

• Data Preparation

• They are useful up to a point

• AutoML -> Automate Machine Learning
• Was very popular “buzz” word over past few years

• Can help to guide the Analytics – but doesn’t give 
some magic answer

• It can give the wrong result -> just like ChatGPT



Pros vs Cons  of AutoML
• Pros

• Reduce the time it takes to implement traditional ML models
• Reduce human effort by automatically running repetitive tasks
• Reduce human errors
• Save a lot of GPU and CPU processing, resulting in cost and power efficiency
• Anyone without ML knowledge can enjoy the benefits of ML features
• Opens doors for new opportunities to create a platform to provide AutoML apps for easier access to 

machine learning

• Cons
• Human intelligence is neglected in complex problems, which can be more efficient than autoML
• More emphasis on research and automating everything can lead to fewer jobs for data scientists
• ML makes some decisions, like feature engineering, on the basis of domain knowledge which is 

lacking in the automation process
• AutoML only focuses on supervised tasks that require labelled data as input and overlooks the more 

challenging tasks of unsupervised and reinforcement learning.



Traditional ML



AutoML



AutoML - Limitation

• It doesn’t work for all types of Algorithms or Problems

• Typically, suited to Classification
• Yes/No

• 1/0

• Multi-Class e.g. 1, 2, 3, 4

• Some can do Regression 

• Not much else -> But a larger percentage of problems are Classification



What does AutoML do

• Iterates through the process
• Data Preparation
• Feature Engineering
• Feature Selection
• Machine Learning
• Tuning

• Output is “Optimal” model
• Usually based on accuracy scores

• Meta Learning is used to iterate back over these steps to improve the results
• Different Feature subsets selected
• Selects appropriate Algorithms
• Keeps iterating -> for a defined time, or a number of iterations or ….



Problems with using AutoML
• Cannot fix for bad Business Problem
• Cannot fix bad/poor Data Quality
• Does not explain WHY things have changed, etc

• Rubbish in = Rubbish out

• Human Oversight is needed
• No or Limited Model Explainability
• Legal Implications
• Reinforce Data Biases 

• But could give you a bit of a guide for you to do Manually -> Human Oversight

• It can be Slow -> But it’s doing lots of work -> It would be slower to write all the code yourself
• This isn’t a bad thing – Just it isn’t a magic solution



Lots of AutoML soluctions

• AutoWEKA
• Auto-sklearn

• Auto-PyTorch
• AutoGluon

• H2O AutoML
• MLBoX

• TPOT

• TransmogrifAI
• Amazon Lex

• AutoKeras
• Data Robot

• BigML AutoML
• Google Cloud AutoML

• Auto-WEKA

Plus lots, lots more

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/
https://automl.github.io/auto-sklearn/master/
https://github.com/automl/Auto-PyTorch
https://auto.gluon.ai/stable/index.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://github.com/AxeldeRomblay/MLBox
http://epistasislab.github.io/tpot/
https://github.com/salesforce/TransmogrifAI
https://aws.amazon.com/lex/
https://autokeras.com/
https://www.datarobot.com/
https://bigml.com/
https://cloud.google.com/automl
https://www.cs.ubc.ca/labs/algorithms/Projects/autoweka/


Some Blog Posts

• AutoML, what is it good for? It Depends!

• AutoML – using TPOT

• AutoML – using autosklearn in Python

• AutoML using Pycaret

• OML4Py – AutoML – Step-by-Step Approach

See Installation Tip 
on next slide

https://oralytics.com/2021/03/01/automl-what-is-it-good-for-it-depends/
https://oralytics.com/2021/04/19/automl-using-tpot/
https://oralytics.com/2021/04/12/automl-using-autosklearn-in-python/
https://oralytics.com/2022/02/28/automl-using-pycaret/
https://oralytics.com/2021/03/29/oml4py-automl-step-by-step-approach/


AutoML install/setup

Similar needed for  
autosklearn

• This can be a little challenging in Anaconda
• Some of these AutoML libraries need specific versions of other libraries

• These might not be what you have installed!

• Create a new Anaconda Virtual Environment
• Install the AutoML into it
• Here are some blog posts illustrating this

• Installing PyCaret in Anaconda
• Pycaret Installation Documentation

• Although some might work in your current Anaconda environment
tpot - It if isn’t listed in available list of libraries to install, run the following

conda install -c conda-forge tpot

https://insaid.medium.com/a-complete-guide-to-pycaret-c07b1e51f698
https://pycaret.gitbook.io/docs/get-started/installation




Time for an 
Example



Any Questions ?

What Now/Next ?


