{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# TU257 - Assignment 1\n", "\n", "#### Student 1: Guilherme\n", "#### Student 2: Lohana Azevedo Rodrigues - D24126847 - (TU257)\n", "#### Student 3: Rafael\n", "\n", "#### Group Num= 3\n", "#### Problem Set= 1 \n", "\n", "#### **Portuguese Banking Marking Campaign -** The data set is related to a direct marketing campaign for a Portuguese banking institution. The bank conducts marketing campaigns and uses their call center to contact their customers using phone calls.\n", "#### ***GOAL***: The purpose of this project is to identify customers who are most likely to subscribe to a term deposit account based on previous marketing campaigns.\n", "#### https://archive.ics.uci.edu/ml/datasets/Bank+Marketing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "________________________________________________________" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Modules" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1 - Importing the Data Set" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
agejobmaritaleducationdefaulthousingloancontactmonthday_of_week...campaignpdayspreviouspoutcomeemp.var.ratecons.price.idxcons.conf.idxeuribor3mnr.employedy
030blue-collarmarriedbasic.9ynoyesnocellularmayfri...29990nonexistent-1.892.893-46.21.3135099.1no
139servicessinglehigh.schoolnononotelephonemayfri...49990nonexistent1.193.994-36.44.8555191.0no
225servicesmarriedhigh.schoolnoyesnotelephonejunwed...19990nonexistent1.494.465-41.84.9625228.1no
338servicesmarriedbasic.9ynounknownunknowntelephonejunfri...39990nonexistent1.494.465-41.84.9595228.1no
447admin.marrieduniversity.degreenoyesnocellularnovmon...19990nonexistent-0.193.200-42.04.1915195.8no
\n", "

5 rows × 21 columns

\n", "
" ], "text/plain": [ " age job marital education default housing loan \\\n", "0 30 blue-collar married basic.9y no yes no \n", "1 39 services single high.school no no no \n", "2 25 services married high.school no yes no \n", "3 38 services married basic.9y no unknown unknown \n", "4 47 admin. married university.degree no yes no \n", "\n", " contact month day_of_week ... campaign pdays previous poutcome \\\n", "0 cellular may fri ... 2 999 0 nonexistent \n", "1 telephone may fri ... 4 999 0 nonexistent \n", "2 telephone jun wed ... 1 999 0 nonexistent \n", "3 telephone jun fri ... 3 999 0 nonexistent \n", "4 cellular nov mon ... 1 999 0 nonexistent \n", "\n", " emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed y \n", "0 -1.8 92.893 -46.2 1.313 5099.1 no \n", "1 1.1 93.994 -36.4 4.855 5191.0 no \n", "2 1.4 94.465 -41.8 4.962 5228.1 no \n", "3 1.4 94.465 -41.8 4.959 5228.1 no \n", "4 -0.1 93.200 -42.0 4.191 5195.8 no \n", "\n", "[5 rows x 21 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#For this project we used the bank-additional data set with 4119 examples.\n", "mkt = pd.read_csv('Data/bank-additional.csv', sep = ';')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2 - Data Exploration" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First 5 values\n", "\n", " age job marital education default housing loan \\\n", "0 30 blue-collar married basic.9y no yes no \n", "1 39 services single high.school no no no \n", "2 25 services married high.school no yes no \n", "3 38 services married basic.9y no unknown unknown \n", "4 47 admin. married university.degree no yes no \n", "\n", " contact month day_of_week ... campaign pdays previous poutcome \\\n", "0 cellular may fri ... 2 999 0 nonexistent \n", "1 telephone may fri ... 4 999 0 nonexistent \n", "2 telephone jun wed ... 1 999 0 nonexistent \n", "3 telephone jun fri ... 3 999 0 nonexistent \n", "4 cellular nov mon ... 1 999 0 nonexistent \n", "\n", " emp.var.rate cons.price.idx cons.conf.idx euribor3m nr.employed y \n", "0 -1.8 92.893 -46.2 1.313 5099.1 no \n", "1 1.1 93.994 -36.4 4.855 5191.0 no \n", "2 1.4 94.465 -41.8 4.962 5228.1 no \n", "3 1.4 94.465 -41.8 4.959 5228.1 no \n", "4 -0.1 93.200 -42.0 4.191 5195.8 no \n", "\n", "[5 rows x 21 columns]\n", "\n", "\n", "(Rows, Columns)\n", "(4119, 21)\n", "\n", "\n", "Data information\n", "\n", "\n", "RangeIndex: 4119 entries, 0 to 4118\n", "Data columns (total 21 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 age 4119 non-null int64 \n", " 1 job 4119 non-null object \n", " 2 marital 4119 non-null object \n", " 3 education 4119 non-null object \n", " 4 default 4119 non-null object \n", " 5 housing 4119 non-null object \n", " 6 loan 4119 non-null object \n", " 7 contact 4119 non-null object \n", " 8 month 4119 non-null object \n", " 9 day_of_week 4119 non-null object \n", " 10 duration 4119 non-null int64 \n", " 11 campaign 4119 non-null int64 \n", " 12 pdays 4119 non-null int64 \n", " 13 previous 4119 non-null int64 \n", " 14 poutcome 4119 non-null object \n", " 15 emp.var.rate 4119 non-null float64\n", " 16 cons.price.idx 4119 non-null float64\n", " 17 cons.conf.idx 4119 non-null float64\n", " 18 euribor3m 4119 non-null float64\n", " 19 nr.employed 4119 non-null float64\n", " 20 y 4119 non-null object \n", "dtypes: float64(5), int64(5), object(11)\n", "memory usage: 675.9+ KB\n", "None\n" ] } ], "source": [ "#Lets start seing the head and the shape of the data \n", "print('First 5 values\\n')\n", "print(mkt.head())\n", "print('\\n\\n(Rows, Columns)')\n", "print(mkt.shape)\n", "print('\\n\\nData information\\n')\n", "print(mkt.info())" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABk8AAANCCAYAAADP91uGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde1yU5b7H/e/IYQSFUTBOSUqGpqFmmogdtBTQQnO5ylYWabnKtqfY6LbMWmIHLVvLbGnZycREo92TllaLwEraPnikKDVz12upKwvEpQgeB8T7+cOHezMCCjgcZvi8Xy9eNdf85r6v3zUgF/dvrvuyGIZhCAAAAAAAAAAAAJKkVk3dAQAAAAAAAAAAgOaE4gkAAAAAAAAAAEAlFE8AAAAAAAAAAAAqoXgCAAAAAAAAAABQCcUTAAAAAAAAAACASiieAAAAAAAAAAAAVELxBAAAAAAAAAAAoBKKJwAAAAAAAAAAAJVQPAEAAAAAAAAAAKiE4gkAAACAJpGSkiKLxdIk5/7xxx+VkpKi/fv3V3lu/Pjx6ty5c6P3CQAAwNk6d+6s8ePHN3U3AJfk2dQdAAAAAIDG9uOPP2ru3LkaPHhwlULJM888o8cff7xpOgYAAOBEa9eulb+/f1N3A3BJFE8AAAAAuLxTp07J19fXKcfq0qWLU44DAADQ1Pr06dPUXQBcFrftAlqwX375RQ899JAiIyPl6+urK6+8UiNGjNDOnTurxO7evVtxcXHy9fXVFVdcocmTJ+uzzz6TxWLRxo0bHWI3bNigIUOGyN/fX76+vrrpppv05ZdfNlJWAACgOfrss890/fXXy2q1KiIiQn/9618dnt+/f78sFotSU1OrvNZisSglJcV8XHG7r2+//VZ333232rdvbxY8duzYoT/96U/q3LmzfHx81LlzZ9133306cOCA+frU1FTdc889kqTbbrtNFovF4dzV3bbrzJkzmjVrliIiIuTt7a0rr7xSkydP1rFjxxziOnfurISEBGVkZOiGG26Qj4+Prr32Wr377rv1GzgAANDgfvrpJ913330KDg6W1WrVVVddpQcffFB2u12HDx/WpEmT1KNHD7Vt21ZBQUG6/fbb9T//8z8Ox6iYy7z88st66aWXzLnI4MGD9b//+78qKyvTk08+qbCwMNlsNv3hD39QYWGhwzEq5hFr165Vr1691Lp1a1199dX6+9//7hB35swZTZ8+Xddff71sNpsCAgIUExOjTz75pEpu1d22q7bXeAYPHqyoqCht375dt9xyi3x9fXX11VfrxRdf1Llz5y5v0AEXwMoToAX7/fffFRgYqBdffFFXXHGFjh49qhUrVig6OlrfffedunXrJknKz8/XoEGD1KZNGy1dulRBQUF6//33NWXKlCrHTEtL04MPPqi77rpLK1askJeXl958803Fx8friy++0JAhQxo7TQAA0MS+/PJL3XXXXYqJiVF6errKy8u1YMECHTp06LKOO3r0aP3pT3/SY489ppMnT0o6f+GiW7du+tOf/qSAgADl5+dr6dKluvHGG/Xjjz+qQ4cOuvPOOzVv3jw99dRTeu2113TDDTdIqnnFiWEYGjVqlL788kvNmjVLt9xyi3744QfNmTNHmzdv1ubNm2W1Ws3477//XtOnT9eTTz6p4OBgvfPOO5owYYKuueYa3XrrrZeVMwAAcK7vv/9eN998szp06KBnn31WkZGRys/P17p161RaWqqjR49KkubMmaOQkBCdOHFCa9eu1eDBg/Xll19q8ODBDsd77bXX1KtXL7322ms6duyYpk+frhEjRig6OlpeXl569913deDAAc2YMUN//vOftW7dOofX5+XlKSkpSSkpKQoJCdGqVav0+OOPq7S0VDNmzJAk2e12HT16VDNmzNCVV16p0tJSbdiwQaNHj9by5cv14IMP1phvXa7xSFJBQYHuv/9+TZ8+XXPmzNHatWs1a9YshYWFXfQ8gFswAOD/d/bsWaO0tNSIjIw0/vM//9Ns/6//+i/DYrEYu3fvdoiPj483JBlff/21YRiGcfLkSSMgIMAYMWKEQ1x5ebnRu3dvo3///g2eAwAAaH6io6ONsLAw4/Tp02ZbSUmJERAQYFT8SbJv3z5DkrF8+fIqr5dkzJkzx3w8Z84cQ5Lxl7/85ZLnPnv2rHHixAmjTZs2xquvvmq2f/jhhw7zmMrGjRtndOrUyXyckZFhSDIWLFjgEPfBBx8Ykoy33nrLbOvUqZPRunVr48CBA2bb6dOnjYCAAGPixImX7C8AAGhct99+u9GuXTujsLCwVvFnz541ysrKjCFDhhh/+MMfzPaKuUzv3r2N8vJys33RokWGJGPkyJEOx0lKSjIkGcXFxWZbp06dDIvFYuTl5TnExsbGGv7+/sbJkycv2qcJEyYYffr0cXiuU6dOxrhx48zHtb3GYxiGMWjQIEOSsXXrVofYHj16GPHx8dX2BXAn3LYLaMHOnj2refPmqUePHvL29panp6e8vb31888/a8+ePWZcdna2oqKi1KNHD4fX33fffQ6Pc3JydPToUY0bN05nz541v86dO6dhw4Zp+/bt5qdCAQBAy3Dy5Elt375do0ePVuvWrc12Pz8/jRgx4rKO/cc//rFK24kTJ/TEE0/ommuukaenpzw9PdW2bVudPHnSYX5TF1999ZUkVbnlxT333KM2bdpUuT3p9ddfr6uuusp83Lp1a3Xt2tXh1mEAAKDpnTp1StnZ2RozZoyuuOKKGuPeeOMN3XDDDWrdurU8PT3l5eWlL7/8stq5xR133KFWrf7vkmv37t0lSXfeeadDXEX7v/71L4f26667Tr1793ZoGzt2rEpKSvTtt9+abR9++KFuuukmtW3b1uzTsmXLLjnfqe01ngohISHq37+/Q1uvXr2Y16BF4LZdQAuWnJys1157TU888YQGDRqk9u3bq1WrVvrzn/+s06dPm3FHjhxRREREldcHBwc7PK649cbdd99d4zmPHj2qNm3aOCkDAADQ3BUVFencuXMKCQmp8lx1bXURGhpapW3s2LH68ssv9cwzz+jGG2+Uv7+/LBaL7rjjDof5TV0cOXJEnp6eVS6qWCwWhYSE6MiRIw7tgYGBVY5htVrrfX4AANAwioqKVF5ero4dO9YYs3DhQk2fPl2PPfaYnnvuOXXo0EEeHh565plnqi1UBAQEODz29va+aPuZM2cc2i82Z6qYc6xZs0ZjxozRPffco//6r/9SSEiIPD09tXTp0kvus1bbazwVmNegJaN4ArRgFfuTzJs3z6H93//+t9q1a2c+DgwMrPae5AUFBQ6PO3ToIElavHixBgwYUO05a/plDAAA3FP79u1lsViqzBskx7lExaoUu93uEHNhYaIyi8Xi8Li4uFiffvqp5syZoyeffNJsr7gveH0FBgbq7NmzOnz4sEMBxTAMFRQU6MYbb6z3sQEAQNMJCAiQh4eHDh48WGNMWlqaBg8erKVLlzq0Hz9+vEH6dLE5U0UhIy0tTREREfrggw8c5kMXzqOqU9trPAAkbtsFtGAWi8Vhc1NJ+uyzz/Tbb785tA0aNEi7du3Sjz/+6NCenp7u8Pimm25Su3bt9OOPP6pfv37VflV8sgIAALQMbdq0Uf/+/bVmzRqHT1YeP35c69evNx8HBwerdevW+uGHHxxe/8knn9T6XBaLRYZhVJnfvPPOOyovL3doq4ipzacmhwwZIun8hYrKPvroI508edJ8HgAAuBYfHx8NGjRIH374of79739XG1PdtZMffvhBmzdvbpA+7d69W99//71D2+rVq+Xn56cbbrjB7JO3t7dD4aSgoKBW86baXuMBwMoToEVLSEhQamqqrr32WvXq1Uu5ubl6+eWXqyxXTUpK0rvvvqvhw4fr2WefVXBwsFavXq2ffvpJksx7ebZt21aLFy/WuHHjdPToUd19990KCgrS4cOH9f333+vw4cNVPqkBAADc33PPPadhw4YpNjZW06dPV3l5uV566SW1adPGXBFisVj0wAMP6N1331WXLl3Uu3dvbdu2TatXr671efz9/XXrrbfq5ZdfVocOHdS5c2dlZ2dr2bJlDqtqJSkqKkqS9NZbb8nPz0+tW7dWREREtbemiI2NVXx8vJ544gmVlJTopptu0g8//KA5c+aoT58+SkxMrP/gAACAJrVw4ULdfPPNio6O1pNPPqlrrrlGhw4d0rp16/Tmm28qISFBzz33nObMmaNBgwZp7969evbZZxUREaGzZ886vT9hYWEaOXKkUlJSFBoaqrS0NGVlZemll16Sr6+vpPPXc9asWaNJkybp7rvv1q+//qrnnntOoaGh+vnnny96/Npe4wHAyhOgRXv11Vf1wAMPaP78+RoxYoTWrVunNWvWqEuXLg5xYWFhys7OVteuXfXYY4/p/vvvl7e3t5599llJcrgY8cADD+jrr7/WiRMnNHHiRA0dOlSPP/64vv32Wz6VCQBACxUbG6uPP/5YJSUluvfee5WcnKw//vGPevjhhx3i/va3v+mBBx7QggULdNddd2nz5s369NNP63Su1atX67bbbtPMmTM1evRo7dixQ1lZWbLZbA5xERERWrRokb7//nsNHjxYN954o8NKmMosFos+/vhjJScna/ny5brjjjv017/+VYmJifrqq6+qfBoVAAC4jooPbPTt21ezZs3SsGHD9MQTT8hqtcrb21uzZ8/W9OnTtWzZMt15551655139MYbb+jmm29ukP5cf/31Wrhwof72t7/prrvu0v/7//6/WrhwoWbOnGnGPPTQQ3rxxRf1j3/8Q3fccYdeeuklPfnkkxo7duwlj1+XazxAS2cxDMNo6k4AcE2PPvqo3n//fR05coTbcQEAAAAAAFyGzp07Kyoqqs4fHnEGrvEAVXHbLgC18uyzzyosLExXX321Tpw4oU8//VTvvPOOnn76aX6pAgAAAAAAuAiu8QC1Q/EEQK14eXnp5Zdf1sGDB3X27FlFRkZq4cKFevzxx5u6awAAAAAAAKglrvEAtcNtuwAAAAAAAAAAACphw3gAAAAAAAAAAIBKKJ4AAAAAAAAAAABUQvEEAAAAAAAAAACgErfdMP7cuXP6/fff5efnJ4vF0tTdAQDgkgzD0PHjxxUWFqZWrfh8Q0vE/AUA4GqYv4D5CwDAldRl7uK2xZPff/9d4eHhTd0NAADq7Ndff1XHjh2buhtoAsxfAACuivlLy8X8BQDgimozd3Hb4omfn5+k84Pg7+/fqOcuKytTZmam4uLi5OXl1ajnbgzk59rIz7W5c37unJtUu/xKSkoUHh5u/g5Dy+Ps+Ys7/ly5Y04SebkSd8xJIi9X05zyYv6CS81fmtP3a0NpCTlKLSPPlpCjRJ7upCXkKDk3z7rMXdy2eFKxVNTf379Jiie+vr7y9/d3y29a8nNt5Ofa3Dk/d85Nqlt+3O6g5XL2/MUdf67cMSeJvFyJO+YkkZeraY55MX9puS41f2mO36/O1hJylFpGni0hR4k83UlLyFFqmDxrM3fhhqQAAAAAAAAAAACVUDwBAAAAAAAAAACohOIJAAAAAAAAAABAJRRPAAAAAAAAAAAAKqF4AgAAAAAAAAAAUIlnU3cA7q/zk581dRdqtP/FO5u6CwAANLiolC9kL7c0dTeq4PcwAAC4ENcQAADNBStPAAAAAAAAAAAAKqF4AgAAAAAAAAAAUAnFEwAAAAAAAAAAgEoongAAAAAAAAAAAFRC8QQAAAAAAAAAAKASiicAAAAAAAAAAACVUDwBAAAAAAAAAACohOIJAAAAAAAAAABAJRRPAACAW1u6dKl69eolf39/+fv7KyYmRv/4xz/M5w3DUEpKisLCwuTj46PBgwdr9+7dDsew2+2aOnWqOnTooDZt2mjkyJE6ePCgQ0xRUZESExNls9lks9mUmJioY8eONUaKAAAAAADAySieAAAAt9axY0e9+OKL2rFjh3bs2KHbb79dd911l1kgWbBggRYuXKglS5Zo+/btCgkJUWxsrI4fP24eIykpSWvXrlV6ero2bdqkEydOKCEhQeXl5WbM2LFjlZeXp4yMDGVkZCgvL0+JiYmNni8AAAAAALh8nk3dAQAAgIY0YsQIh8cvvPCCli5dqi1btqhHjx5atGiRZs+erdGjR0uSVqxYoeDgYK1evVoTJ05UcXGxli1bppUrV2ro0KGSpLS0NIWHh2vDhg2Kj4/Xnj17lJGRoS1btig6OlqS9PbbbysmJkZ79+5Vt27dGjdpAAAAAABwWSieAACAFqO8vFwffvihTp48qZiYGO3bt08FBQWKi4szY6xWqwYNGqScnBxNnDhRubm5Kisrc4gJCwtTVFSUcnJyFB8fr82bN8tms5mFE0kaMGCAbDabcnJyaiye2O122e1283FJSYkkqaysTGVlZZedb8UxrK2Myz5WQ6hPjhWvccb4NCfk5TrcMSeJvFxNc8qrOfQBAACgIVA8AQAAbm/nzp2KiYnRmTNn1LZtW61du1Y9evRQTk6OJCk4ONghPjg4WAcOHJAkFRQUyNvbW+3bt68SU1BQYMYEBQVVOW9QUJAZU5358+dr7ty5VdozMzPl6+tbtyQv4rl+55x2LGf6/PPP6/3arKwsJ/ak+SAv1+GOOUnk5WqaQ16nTp1q6i4AAAA0CIonAADA7XXr1k15eXk6duyYPvroI40bN07Z2dnm8xaLxSHeMIwqbRe6MKa6+EsdZ9asWUpOTjYfl5SUKDw8XHFxcfL3979kXpdSVlamrKwsPbOjleznLp5PU9iVEl/n11TkFBsbKy8vrwboVdMgL9fhjjlJ5OVqmlNeFasmAQAA3A3FEwAA4Pa8vb11zTXXSJL69eun7du369VXX9UTTzwh6fzKkdDQUDO+sLDQXI0SEhKi0tJSFRUVOaw+KSws1MCBA82YQ4cOVTnv4cOHq6xqqcxqtcpqtVZp9/LycurFMPs5i+zlza94cjk5OnuMmgvych3umJNEXq6mOeTV1OcHAABoKK2augMAAACNzTAM2e12RUREKCQkxOG2J6WlpcrOzjYLI3379pWXl5dDTH5+vnbt2mXGxMTEqLi4WNu2bTNjtm7dquLiYjMGAAAAAAC4DlaeAAAAt/bUU09p+PDhCg8P1/Hjx5Wenq6NGzcqIyNDFotFSUlJmjdvniIjIxUZGal58+bJ19dXY8eOlSTZbDZNmDBB06dPV2BgoAICAjRjxgz17NlTQ4cOlSR1795dw4YN0yOPPKI333xTkvToo48qISGhxs3iAQAAAABA80XxBAAAuLVDhw4pMTFR+fn5stls6tWrlzIyMhQbGytJmjlzpk6fPq1JkyapqKhI0dHRyszMlJ+fn3mMV155RZ6enhozZoxOnz6tIUOGKDU1VR4eHmbMqlWrNG3aNMXFxUmSRo4cqSVLljRusgAAAAAAwCnqfNuub775RiNGjFBYWJgsFos+/vhjh+cNw1BKSorCwsLk4+OjwYMHa/fu3Q4xdrtdU6dOVYcOHdSmTRuNHDlSBw8edIgpKipSYmKibDabbDabEhMTdezYsTonCAAAWrZly5Zp//79stvtKiws1IYNG8zCiXR+o/eUlBTl5+frzJkzys7OVlRUlMMxWrdurcWLF+vIkSM6deqU1q9fr/DwcIeYgIAApaWlqaSkRCUlJUpLS1O7du0aI0UAAAAAAOBkdS6enDx5Ur17967xk5QLFizQwoULtWTJEm3fvl0hISGKjY3V8ePHzZikpCStXbtW6enp2rRpk06cOKGEhASVl5ebMWPHjlVeXp4yMjKUkZGhvLw8JSYm1iNFAAAAAAAAAACA2qvzbbuGDx+u4cOHV/ucYRhatGiRZs+erdGjR0uSVqxYoeDgYK1evVoTJ05UcXGxli1bppUrV5r3CU9LS1N4eLg2bNig+Ph47dmzRxkZGdqyZYuio6MlSW+//bZiYmK0d+9e7h0OAAAAAAAAAAAajFP3PNm3b58KCgrMe31LktVq1aBBg5STk6OJEycqNzdXZWVlDjFhYWGKiopSTk6O4uPjtXnzZtlsNrNwIkkDBgyQzWZTTk5OtcUTu90uu91uPi4pKZEklZWVqayszJlpXlLF+Rr7vI2lrvlZPYyG7M5lqS4H3j/XRn6uy51zk2qXn7vmDgAAgLpZunSpli5dqv3790uSrrvuOv3lL38xP8xqGIbmzp2rt956y9yz7bXXXtN1111nHsNut2vGjBl6//33zT3bXn/9dXXs2NGMKSoq0rRp07Ru3TpJ5/dsW7x4MbceBQBATi6eFBQUSJKCg4Md2oODg3XgwAEzxtvbW+3bt68SU/H6goICBQUFVTl+UFCQGXOh+fPna+7cuVXaMzMz5evrW/dknCArK6tJzttYapvfgv4N3JHL8Pnnn9f4HO+fayM/1+XOuUkXz+/UqVON2BMAAAA0Vx07dtSLL76oa665RtL5u3rcdddd+u6773TdddeZt0xPTU1V165d9fzzzys2NlZ79+6Vn5+fpPO3TF+/fr3S09MVGBio6dOnKyEhQbm5ufLw8JB0/pbpBw8eVEZGhiTp0UcfVWJiotavX980iQMA0Iw4tXhSwWKxODw2DKNK24UujKku/mLHmTVrlpKTk83HJSUlCg8PV1xcnPz9/evS/ctWVlamrKwsxcbGysvLq1HP3Rjqml9UyheN0Kv62ZUSX6WN98+1kZ/rcufcpNrlV7FqEgAAAC3biBEjHB6/8MILWrp0qbZs2aIePXpwy3QAABqBU4snISEhks6vHAkNDTXbCwsLzdUoISEhKi0tVVFRkcPqk8LCQg0cONCMOXToUJXjHz58uMqqlgpWq1VWq7VKu5eXV5NdhGvKczeG2uZnL7944awpXaz/vH+ujfxclzvnJl08P3fOGwAAAPVTXl6uDz/8UCdPnlRMTEyT3jJdqvtt09391t+V2939NrwtIc+WkKNEnu6kJeQoOTfPuhzDqcWTiIgIhYSEKCsrS3369JEklZaWKjs7Wy+99JIkqW/fvvLy8lJWVpbGjBkjScrPz9euXbu0YMECSVJMTIyKi4u1bds29e9//p5PW7duVXFxsVlgAQAAAAAAcFc7d+5UTEyMzpw5o7Zt22rt2rXq0aOHcnJyJDXNLdOl+t823d1v/S25/y2IK7SEPFtCjhJ5upOWkKPknDzrcsv0OhdPTpw4oV9++cV8vG/fPuXl5SkgIEBXXXWVkpKSNG/ePEVGRioyMlLz5s2Tr6+vxo4dK0my2WyaMGGCpk+frsDAQAUEBGjGjBnq2bOnuZS0e/fuGjZsmB555BG9+eabks7fdzMhIYFlowAAAAAAwO1169ZNeXl5OnbsmD766CONGzdO2dnZ5vNNcct0qe63TXf3W39L7n8L4gotIc+WkKNEnu6kJeQoOTfPutwyvc7Fkx07dui2224zH1f8whw3bpxSU1M1c+ZMnT59WpMmTVJRUZGio6OVmZlpblgmSa+88oo8PT01ZswYnT59WkOGDFFqaqq5YZkkrVq1StOmTTOXmI4cOVJLliypa3cBAAAAAABcjre3t7lhfL9+/bR9+3a9+uqreuKJJyQ1zS3TpfrfNt3db/1d8bw7X7ys0BLybAk5SuTpTlpCjpJz8qzL61vV9eCDBw+WYRhVvlJTUyWd/9RCSkqK8vPzdebMGWVnZysqKsrhGK1bt9bixYt15MgRnTp1SuvXr1d4eLhDTEBAgNLS0lRSUqKSkhKlpaWpXbt2de0uAAAAAACAyzMMQ3a73eGW6RUqbpleURipfMv0ChW3TK+IqXzL9ArcMh0AgP/j1D1PAAAAAAAAcHmeeuopDR8+XOHh4Tp+/LjS09O1ceNGZWRkyGKxcMt0AAAaAcUTAAAAAACAZuTQoUNKTExUfn6+bDabevXqpYyMDMXGxkoSt0wHAKARUDwBAAAAAABoRpYtW3bR5ytumZ6SklJjTMUt0xcvXlxjTMUt0wEAQFV13vMEAAAAAAAAAADAnVE8AQAAAAAAAAAAqITiCQAAAAAAAAAAQCUUTwAAAAAAAAAAACqheAIAAAAAAAAAAFAJxRMAAAAAAAAAAIBKKJ4AAAAAAAAAAABUQvEEAAAAAAAAAACgEoonAAAAAAAAAAAAlVA8AQAAAAAAAAAAqITiCQAAAAAAAAAAQCUUTwAAAAAAAAAAACqheAIAAAAAAAAAAFCJZ1N3AM7R+cnPGu1cVg9DC/pLUSlfyF5uabTzAgAAAAAAAADQGFh5AgAAAAAAAAAAUAkrT9CiVbdip7msrNn/4p1Ndm4AAAAAAAAAaMlYeQIAAAAAAAAAAFCJ04snnTt3lsViqfI1efJkSdL48eOrPDdgwACHY9jtdk2dOlUdOnRQmzZtNHLkSB08eNDZXQUAAAAAAAAAAKjC6cWT7du3Kz8/3/zKysqSJN1zzz1mzLBhwxxiPv/8c4djJCUlae3atUpPT9emTZt04sQJJSQkqLy83NndBQAAAAAAAAAAcOD0PU+uuOIKh8cvvviiunTpokGDBpltVqtVISEh1b6+uLhYy5Yt08qVKzV06FBJUlpamsLDw7VhwwbFx8c7u8sAAAAAAAAAAACmBt3zpLS0VGlpaXr44YdlsfzfxtsbN25UUFCQunbtqkceeUSFhYXmc7m5uSorK1NcXJzZFhYWpqioKOXk5DRkdwEAAAAAAAAAAJy/8qSyjz/+WMeOHdP48ePNtuHDh+uee+5Rp06dtG/fPj3zzDO6/fbblZubK6vVqoKCAnl7e6t9+/YOxwoODlZBQUGN57Lb7bLb7ebjkpISSVJZWZnKysqcm9glVJyvMc9r9TAa71ytDIf/upvmkl9Dff80xfdnYyI/1+XOuUm1y89dc29q8+fP15o1a/TTTz/Jx8dHAwcO1EsvvaRu3bqZMYZhaO7cuXrrrbdUVFSk6Ohovfbaa7ruuuvMGLvdrhkzZuj999/X6dOnNWTIEL3++uvq2LGjGVNUVKRp06Zp3bp1kqSRI0dq8eLFateuXaPlCwAAAAAALl+DFk+WLVum4cOHKywszGy79957zf+PiopSv3791KlTJ3322WcaPXp0jccyDMNh9cqF5s+fr7lz51Zpz8zMlK+vbz0zuDwV+700hgX9G+1Upuf6nWv8kzaips7vwr2AnK0xvz+bAvm5LnfOTbp4fqdOnWrEnrQc2dnZmjx5sm688UadPXtWs2fPVlxcnH788Ue1adNGkrRgwQItXLhQqamp6tq1q55//nnFxsZq79698vPzk3R+T7b169crPT1dgYGBmj59uhISEpSbmysPDw9J0tixY3Xw4EFlZGRIkh599FElJiZq/fr1TZM8AAAAAAColwYrnhw4cEAbNmzQmjVrLhoXGhqqTp066eeff5YkhYSEqLS0VEVFRQ6rTwoLCzVw4MAajzNr1iwlJyebj0tKShQeHq64uDj5+/tfZjZ1U1ZWpqysLMXGxsrLy6tRzhmV8kWjnEc6vyLjuX7n9MyOVrKfq7mg5aqaS367Uhpmf5+m+P5sTOTnutw5N6l2+VWsmoRzVRQyKixfvlxBQUHKzc3VrbfeKsMwtGjRIs2ePdv8IMeKFSsUHBys1atXa+LEibXak23Pnj3KyMjQli1bFB0dLUl6++23FRMTo7179zqsdAEAAAAAAM1bgxVPKi5M3HnnnReNO3LkiH799VeFhoZKkvr27SsvLy9lZWVpzJgxkqT8/Hzt2rVLCxYsqPE4VqtVVqu1SruXl1eTXYRrzHPbyxv/Ir/9nKVJzttYmjq/hv7eacqfjcZAfq7LnXOTLp6fO+fdnBQXF0uSAgICJEn79u1TQUGBw35rVqtVgwYNUk5OjiZOnHjJPdni4+O1efNm2Ww2s3AiSQMGDJDNZlNOTg7FEwAAAAAAXEiDFE/OnTun5cuXa9y4cfL0/L9TnDhxQikpKfrjH/+o0NBQ7d+/X0899ZQ6dOigP/zhD5Ikm82mCRMmaPr06QoMDFRAQIBmzJihnj17mp/0BAAAqA/DMJScnKybb75ZUVFRkmTuqRYcHOwQGxwcrAMHDpgxl9qTraCgQEFBQVXOGRQUVOO+bQ29Z1vFMZp6H6+a1CdHd90fibxchzvmJJGXq2lOeTWHPgAAADSEBimebNiwQf/617/08MMPO7R7eHho586deu+993Ts2DGFhobqtttu0wcffGDeT1ySXnnlFXl6emrMmDHmhqypqanm/cQBAADqY8qUKfrhhx+0adOmKs9duLfapfZbqy6muviLHaex9mxr6n28anI5+3u56/5I5OU63DEnibxcTXPIiz3bAACAu2qQ4klcXJwMo+onHH18fPTFF5fem6N169ZavHixFi9e3BDdAwAALdDUqVO1bt06ffPNN+rYsaPZHhISIun8ypGK24hK5/dbq1iNUps92UJCQnTo0KEq5z18+HCVVS0VGnrPtoq9dpp6H6+a1Gd/L3fdH4m8XIc75iSRl6tpTnmxZxsAAHBXDbbnCQAAQHNgGIamTp2qtWvXauPGjYqIiHB4PiIiQiEhIcrKylKfPn0kSaWlpcrOztZLL70kqXZ7ssXExKi4uFjbtm1T//79JUlbt25VcXGxWWC5UGPt2dbU+3jV5HJydNf9kcjLdbhjThJ5uZrmkFdTnx8AAKChUDwBAABubfLkyVq9erU++eQT+fn5mfuP2Gw2+fj4yGKxKCkpSfPmzVNkZKQiIyM1b948+fr6auzYsWbspfZk6969u4YNG6ZHHnlEb775piTp0UcfVUJCApvFAwAAAADgYlo1dQcAAAAa0tKlS1VcXKzBgwcrNDTU/Prggw/MmJkzZyopKUmTJk1Sv3799NtvvykzM7PKnmyjRo3SmDFjdNNNN8nX11fr16932JNt1apV6tmzp+Li4hQXF6devXpp5cqVjZovAABwbfPnz9eNN94oPz8/BQUFadSoUdq7d69DjGEYSklJUVhYmHx8fDR48GDt3r3bIcZut2vq1Knq0KGD2rRpo5EjR+rgwYMOMUVFRUpMTJTNZpPNZlNiYqKOHTvW0CkCAOASKJ4AAAC3ZhhGtV/jx483YywWi1JSUpSfn68zZ84oOztbUVFRDsep2JPtyJEjOnXqlNavX6/w8HCHmICAAKWlpamkpEQlJSVKS0tTu3btGiFLAADgLrKzszV58mRt2bJFWVlZOnv2rOLi4nTy5EkzZsGCBVq4cKGWLFmi7du3KyQkRLGxsTp+/LgZk5SUpLVr1yo9PV2bNm3SiRMnlJCQoPLycjNm7NixysvLU0ZGhjIyMpSXl6fExMRGzRcAgOaK23YBAAAAAAA0ExkZGQ6Ply9frqCgIOXm5urWW2+VYRhatGiRZs+erdGjR0uSVqxYoeDgYK1evVoTJ05UcXGxli1bppUrV5q3GE1LS1N4eLg2bNig+Ph47dmzRxkZGdqyZYuio6MlSW+//bZiYmK0d+9ebjsKAGjxKJ4AAAAAAAA0U8XFxZLOr3CVpH379qmgoEBxcXFmjNVq1aBBg5STk6OJEycqNzdXZWVlDjFhYWGKiopSTk6O4uPjtXnzZtlsNrNwIkkDBgyQzWZTTk5OjcUTu90uu91uPi4pKZEklZWVqaysrEp8RVt1z1XH6mHUKq4p1JRDXXN0VS0hz5aQo0Se7qQl5Cg5N8+6HIPiCQAAAAAAQDNkGIaSk5N18803m7cULSgokCQFBwc7xAYHB+vAgQNmjLe3t9q3b18lpuL1BQUFCgoKqnLOoKAgM6Y68+fP19y5c6u0Z2ZmytfXt8bXZWVl1fhcZQv61yqsSXz++ecXfb62Obq6lpBnS8hRIk930hJylJyT56lTp2odS/EEAAAAAACgGZoyZYp++OEHbdq0qcpzFovF4bFhGFXaLnRhTHXxlzrOrFmzlJycbD4uKSlReHi44uLi5O/vXyW+rKxMWVlZio2NlZeX10X7J0lRKV9cMqap7EqJr7a9rjm6qpaQZ0vIUSJPd9IScpScm2fFisnaoHgCAAAAAADQzEydOlXr1q3TN998o44dO5rtISEhks6vHAkNDTXbCwsLzdUoISEhKi0tVVFRkcPqk8LCQg0cONCMOXToUJXzHj58uMqqlsqsVqusVmuVdi8vr4te0LrU8xXs5RcvADWlS/W/tjm6upaQZ0vIUSJPd9IScpSck2ddXt/qss4EAAAAAAAApzEMQ1OmTNGaNWv01VdfKSIiwuH5iIgIhYSEONy6pLS0VNnZ2WZhpG/fvvLy8nKIyc/P165du8yYmJgYFRcXa9u2bWbM1q1bVVxcbMYAANCSsfIEAAAAAACgmZg8ebJWr16tTz75RH5+fub+IzabTT4+PrJYLEpKStK8efMUGRmpyMhIzZs3T76+vho7dqwZO2HCBE2fPl2BgYEKCAjQjBkz1LNnTw0dOlSS1L17dw0bNkyPPPKI3nzzTUnSo48+qoSEhBo3iwcAoCWheAI0U52f/KxBjmv1MLSg//n7yF7Ocuj9L97pxF4BAAAAACRp6dKlkqTBgwc7tC9fvlzjx4+XJM2cOVOnT5/WpEmTVFRUpOjoaGVmZsrPz8+Mf+WVV+Tp6akxY8bo9OnTGjJkiFJTU+Xh4WHGrFq1StOmTVNcXJwkaeTIkVqyZEnDJggAgIugeAIAAAAAANBMGIZxyRiLxaKUlBSlpKTUGNO6dWstXrxYixcvrjEmICBAaWlp9ekmAABujz1PAAAAAAAAAAAAKqF4AgAAAAAAAAAAUAnFEwAAAAAAAAAAgEoongAAAAAAAAAAAFRC8QQAAAAAAAAAAKASiicAAAAAAAAAAACVUDwBAAAAAAAAAACohOIJAAAAAAAAAABAJU4vnqSkpMhisTh8hYSEmM8bhqGUlBSFhYXJx8dHgwcP1u7dux2OYbfbNXXqVHXo0EFt2rTRyJEjdfDgQWd3FQAAAAAAAAAAoIoGWXly3XXXKT8/3/zauXOn+dyCBQu0cOFCLVmyRNu3b1dISIhiY2N1/PhxMyYpKUlr165Venq6Nm3apBMnTighIUHl5eUN0V0AAAAAAAAAAACTZ4Mc1NPTYbVJBcMwtGjRIs2ePVujR4+WJK1YsULBwcFavXq1Jk6cqOLiYi1btkwrV67U0KFDJUlpaWkKDw/Xhg0bFB8f3xBdBgAAAAAAAAAAkNRAxZOff/5ZYWFhslqtio6O1rx583T11Vdr3759KigoUFxcnBlrtVo1aNAg5eTkaOLEicrNzVVZWZlDTFhYmKKiopSTk1Nj8cRut8tut5uPS0pKJEllZWUqKytriDRrVHG+xjyv1cNovHO1Mhz+627Ir3Ya++eqtpri568xuXN+7pybVLv83DV3AAAAAAAAV+P04kl0dLTee+89de3aVYcOHdLzzz+vgQMHavfu3SooKJAkBQcHO7wmODhYBw4ckCQVFBTI29tb7du3rxJT8frqzJ8/X3Pnzq3SnpmZKV9f38tNq16ysrIa7VwL+jfaqUzP9TvX+CdtROR3cZ9//rmTetIwGvPnrym4c37unJt08fxOnTrViD0BAAAAAABATZxePBk+fLj5/z179lRMTIy6dOmiFStWaMCAAZIki8Xi8BrDMKq0XehSMbNmzVJycrL5uKSkROHh4YqLi5O/v399Uqm3srIyZWVlKTY2Vl5eXo1yzqiULxrlPNL5FQvP9TunZ3a0kv3cxd83V0R+tbMrpXneQq8pfv4akzvn5865SbXLr2LVJAAAAAAAAJpWg9y2q7I2bdqoZ8+e+vnnnzVq1ChJ51eXhIaGmjGFhYXmapSQkBCVlpaqqKjIYfVJYWGhBg4cWON5rFarrFZrlXYvL68muwjXmOe2lzf+RX77OUuTnLexkN/FNfeL2035s98Y3Dk/d85Nunh+7pw3AAAAAACAK2nw4ondbteePXt0yy23KCIiQiEhIcrKylKfPn0kSaWlpcrOztZLL70kSerbt6+8vLyUlZWlMWPGSJLy8/O1a9cuLViwoKG7C6CWOj/5WVN3oVpWD6NJbmMHAAAAAAAAwH04vXgyY8YMjRgxQldddZUKCwv1/PPPq6SkROPGjZPFYlFSUpLmzZunyMhIRUZGat68efL19dXYsWMlSTabTRMmTND06dMVGBiogIAAzZgxQz179tTQoUOd3V0AAAAAAAAAAAAHTi+eHDx4UPfdd5/+/e9/64orrtCAAQO0ZcsWderUSZI0c+ZMnT59WpMmTVJRUZGio6OVmZkpPz8/8xivvPKKPD09NWbMGJ0+fVpDhgxRamqqPDw8nN1dAAAAAAAAAAAAB04vnqSnp1/0eYvFopSUFKWkpNQY07p1ay1evFiLFy92cu8AAAAAAAAAAAAurlVTdwAAAAAAAAAAAKA5oXgCAAAAAAAAAABQCcUTAAAAAAAAAACASiieAAAAAAAAAAAAVELxBAAAAAAAAAAAoBKKJwAAAAAAAAAAAJVQPAEAAAAAAAAAAKiE4gkAAHBr33zzjUaMGKGwsDBZLBZ9/PHHDs8bhqGUlBSFhYXJx8dHgwcP1u7dux1i7Ha7pk6dqg4dOqhNmzYaOXKkDh486BBTVFSkxMRE2Ww22Ww2JSYm6tixYw2cHQAAAAAAaAgUTwAAgFs7efKkevfurSVLllT7/IIFC7Rw4UItWbJE27dvV0hIiGJjY3X8+HEzJikpSWvXrlV6ero2bdqkEydOKCEhQeXl5WbM2LFjlZeXp4yMDGVkZCgvL0+JiYkNnh8AAAAAAHA+z6buAAAAQEMaPny4hg8fXu1zhmFo0aJFmj17tkaPHi1JWrFihYKDg7V69WpNnDhRxcXFWrZsmVauXKmhQ4dKktLS0hQeHq4NGzYoPj5ee/bsUUZGhrZs2aLo6GhJ0ttvv62YmBjt3btX3bp1a5xkAQAAAACAU1A8AQAALda+fftUUFCguLg4s81qtWrQoEHKycnRxIkTlZubq7KyMoeYsLAwRUVFKScnR/Hx8dq8ebNsNptZOJGkAQMGyGazKScnp8biid1ul91uNx+XlJRIksrKylRWVnbZ+VUcw9rKuOxjNYT65FjxGmeMT3NCXq7DHXOSyMvVNKe8mkMfAAAAGgLFEwAA0GIVFBRIkoKDgx3ag4ODdeDAATPG29tb7du3rxJT8fqCggIFBQVVOX5QUJAZU5358+dr7ty5VdozMzPl6+tbt2Qu4rl+55x2LGf6/PPP6/3arKwsJ/ak+SAv1+GOOUnk5WqaQ16nTp1q6i64pW+++UYvv/yycnNzlZ+fr7Vr12rUqFHm84ZhaO7cuXrrrbdUVFSk6Ohovfbaa7ruuuvMGLvdrhkzZuj999/X6dOnNWTIEL3++uvq2LGjGVNUVKRp06Zp3bp1kqSRI0dq8eLFateuXWOlCgBAs0XxBAAAtHgWi8XhsWEYVdoudGFMdfGXOs6sWbOUnJxsPi4pKVF4eLji4uLk7+9f2+7XqKysTFlZWXpmRyvZz108n6awKyW+zq+pyCk2NlZeXl4N0KumQV6uwx1zksjL1TSnvCpWTcK5KvZse+ihh/THP/6xyvMVe7alpqaqa9euev755xUbG6u9e/fKz89P0vk929avX6/09HQFBgZq+vTpSkhIUG5urjw8PCSd37Pt4MGDysjIkCQ9+uijSkxM1Pr16xsvWQAAmimKJwAAoMUKCQmRdH7lSGhoqNleWFhorkYJCQlRaWmpioqKHFafFBYWauDAgWbMoUOHqhz/8OHDVVa1VGa1WmW1Wqu0e3l5OfVimP2cRfby5lc8uZwcnT1GzQV5uQ53zEkiL1fTHPJq6vO7K/ZsAwCg6VE8AQAALVZERIRCQkKUlZWlPn36SJJKS0uVnZ2tl156SZLUt29feXl5KSsrS2PGjJEk5efna9euXVqwYIEkKSYmRsXFxdq2bZv69+8vSdq6dauKi4vNAgsAAIAzuNqebXXdo8fq0Tz3apNqzqE57UPUkFpCni0hR4k83UlLyFFybp51OQbFEwAA4NZOnDihX375xXy8b98+5eXlKSAgQFdddZWSkpI0b948RUZGKjIyUvPmzZOvr6/Gjh0rSbLZbJowYYKmT5+uwMBABQQEaMaMGerZs6f5Sc7u3btr2LBheuSRR/Tmm29KOn/bi4SEBD61CQAAnMpV92yr7R49C/rXKqxJXGq/tuawD1FjaAl5toQcJfJ0Jy0hR8k5edZlvzaKJwAAwK3t2LFDt912m/m4Yo+RcePGKTU1VTNnztTp06c1adIkc8PVzMxM837hkvTKK6/I09NTY8aMMTdcTU1NNe8XLkmrVq3StGnTzE94jhw5UkuWLGmkLAEAQEvjKnu21XWPnqiULy4Z01Rq2q+tOe1D1JBaQp4tIUeJPN1JS8hRcm6eddmvjeIJAABwa4MHD5Zh1Hz7B4vFopSUFKWkpNQY07p1ay1evFiLFy+uMSYgIEBpaWmX01UAAIBLctU922q7R09z3KetwqX63xz2IWoMLSHPlpCjRJ7upCXkKDknz7q8vtVlnQkAAAAAAACNpvKebRUq9myrKIxU3rOtQsWebRUxlfdsq8CebQAA/B9WngAAAAAAADQj7NkGAEDTc/rKk/nz5+vGG2+Un5+fgoKCNGrUKO3du9chZvz48bJYLA5fAwYMcIix2+2aOnWqOnTooDZt2mjkyJE6ePCgs7sLAAAAAADQrOzYsUN9+vRRnz59JJ3fs61Pnz76y1/+IkmaOXOmkpKSNGnSJPXr10+//fZbtXu2jRo1SmPGjNFNN90kX19frV+/vsqebT179lRcXJzi4uLUq1cvrVy5snGTBQCgmXL6ypPs7GxNnjxZN954o86ePavZs2crLi5OP/74o9q0aWPGDRs2TMuXLzcfe3t7OxwnKSlJ69evV3p6ugIDAzV9+nQlJCQoNzfX4Rc9AAAAAACAO2HPNgAAmp7TiycZGRkOj5cvX66goCDl5ubq1ltvNdutVqu5ydmFiouLtWzZMq1cudJcTpqWlqbw8HBt2LBB8fHxzu42AAAAAAAAAACApEbYML64uFjS+U8zVLZx40YFBQWpa9eueuSRR1RYWGg+l5ubq7KyMsXFxZltYWFhioqKUk5OTkN3GQAAAAAAAAAAtGANumG8YRhKTk7WzTffrKioKLN9+PDhuueee9SpUyft27dPzzzzjG6//Xbl5ubKarWqoKBA3t7eat++vcPxgoODVVBQUO257Ha77Ha7+bikpESSVFZWprKysgbIrmYV52vM81o9al7O6/RztTIc/utuyM+1VeTV2D/3jaUp/n1pLO6cm1S7/Nw1dwAAAAAAAFfToMWTKVOm6IcfftCmTZsc2u+9917z/6OiotSvXz916tRJn332mUaPHl3j8QzDkMViqfa5+fPna+7cuVXaMzMz5evrW88MLk9WVlajnWtB/0Y7lem5fuca/6SNiPxcW2P+/DUFd87PnXOTLp7fqVOnGrEnAAAAAAAAqEmDFU+mTp2qdevW6ZtvvlHHjh0vGhsaGqpOnTrp559/liSFhISotLRURUVFDqtPCgsLNXDgwGqPMWvWLCUnJ5uPS0pKFB4erri4OPn7+zsho9orKytTVlaWYmNj5eXl1SjnjEr5olHOI53/ZP9z/c7pmR2tZD9XfTHLlZGfa6vIrzF//hpTU/z70ljcOTepdvlVrJoEAAAAAABA03J68cQwDE2dOlVr167Vxo0bFRERccnXHDlyRL/++qtCQ0MlSX379pWXl5eysrI0ZswYSVJ+fr527dqlBQsWVHsMq9Uqq9Vapd3Ly6vJLsI15rnt5Y1/Edx+ztIk520s5OfamvJnvzG4c37unJt08fzcOW8AAAAAAABX4vTiyeTJk7V69Wp98skn8vPzM/cosdls8vHx0YkTJ5SSkqI//vGPCg0N1f79+/XUU0+pQ4cO+sMf/mDGTpgwQdOnT1dgYKACAgI0Y8YM9ezZU0OHDnV2lwEAANAEOj/5WZ1fY/UwtKD/+VW3DfkhgP0v3tlgxwYAAAAANH9OL54sXbpUkjR48GCH9uXLl2v8+PHy8PDQzp079d577+nYsWMKDQ3Vbbfdpg8++EB+fn5m/CuvvCJPT0+NGTNGp0+f1pAhQ5SamioPDw9ndxkAAAAAAAAAAMDUILftuhgfHx998cWl9+do3bq1Fi9erMWLFzurawAAAAAAAAAAAJfUqqk7AAAAAAAAAAAA0JxQPAEAAAAAAAAAAKiE4gkAAAAAAAAAAEAlFE8AAAAAAAAAAAAqoXgCAAAAAAAAAABQCcUTAAAAAAAAAACASiieAAAAAAAAAAAAVELxBAAAAAAAAAAAoBKKJwAAAAAAAAAAAJVQPAEAAAAAAAAAAKiE4gkAAAAAAAAAAEAlFE8AAAAAAAAAAAAqoXgCAAAAAAAAAABQiWdTd8CVdH7ys1rFWT0MLegvRaV8IXu5pYF7BQAAAAAAgIZW03Wh5nIdaP+LdzbZuQHAHbHyBAAAAAAAAAAAoBKKJwAAAAAAAAAAAJVQPAEAAAAAAAAAAKiE4gkAAAAAAAAAAEAlbBgPwC019UZ9NWEDPwAAAAAAAKD5o3gCAAAAXKDzk5816vmsHoYW9K9d8Z9CPAAAAAA0PG7bBQAAAAAAAAAAUEmzX3ny+uuv6+WXX1Z+fr6uu+46LVq0SLfccktTdwsAAKBazF0AAICrYf7iHhp65WxdVspeiJWzAFxRs1558sEHHygpKUmzZ8/Wd999p1tuuUXDhw/Xv/71r6buGgAAQBXMXQAAgKth/gIAQPWa9cqThQsXasKECfrzn/8sSVq0aJG++OILLV26VPPnz2/i3gFA3V3uJ4Eu55M+zd3FcuNTSnAVzF3QGBp7P5a64N9rAHA9zF8AAKhesy2elJaWKjc3V08++aRDe1xcnHJycqrE2+122e1283FxcbEk6ejRoyorK3NKnzzPnqxd3DlDp06dk2dZK5Wfc6+LmxL5uTryc23unN/Fcrtmxn83Ua8ubeusIbWKKysr06lTp3TkyBF5eXlVG3P8+HFJkmEYTusfGk9d5y5Sw89fKr7v3OnfDHf9d9Bd8jpy5IjD49r82+dq3DEnibxcTXPKi/mLa2uM+Utdv19re+2lOXGX3+OXcjl5Nue/6SqztjL0dJ9zun72GtmbwXtZ278366o5/R5pSC0hz5aQo+TcPOsyd2m2xZN///vfKi8vV3BwsEN7cHCwCgoKqsTPnz9fc+fOrdIeERHRYH28mLFNctbGQ36ujfxcmzvn54q5dfib8495/Phx2Ww25x8YDaqucxep+c1fXIUr/ltRG+6QV0P8mwjANTB/cU3MX5zHHX6P10ZLyLM55cjcCmg4tZm7NNviSQWLxbHKaxhGlTZJmjVrlpKTk83H586d09GjRxUYGFhtfEMqKSlReHi4fv31V/n7+zfquRsD+bk28nNt7pyfO+cm1S4/wzB0/PhxhYWFNXLv4Ey1nbtIDT9/ccefK3fMSSIvV+KOOUnk5WqaU17MX9xDQ85fmtP3a0NpCTlKLSPPlpCjRJ7upCXkKDk3z7rMXZpt8aRDhw7y8PCo8kmHwsLCKp+IkCSr1Sqr1erQ1q5du4bs4iX5+/u79Tct+bk28nNt7pyfO+cmXTo/PrHpuuo6d5Eab/7ijj9X7piTRF6uxB1zksjL1TSXvJi/uK7GnL80l+/XhtQScpRaRp4tIUeJPN1JS8hRcl6etZ27tLrsMzUQb29v9e3bV1lZWQ7tWVlZGjhwYBP1CgAAoHrMXQAAgKth/gIAQM2a7coTSUpOTlZiYqL69eunmJgYvfXWW/rXv/6lxx57rKm7BgAAUAVzFwAA4GqYvwAAUL1mXTy59957deTIET377LPKz89XVFSUPv/8c3Xq1Kmpu3ZRVqtVc+bMqbKM1V2Qn2sjP9fmzvm5c26S++eH85rb3MUdv+/cMSeJvFyJO+YkkZercde80DQaev7SEr5fW0KOUsvIsyXkKJGnO2kJOUpNl6fFMAyjUc8IAAAAAAAAAADQjDXbPU8AAAAAAAAAAACaAsUTAAAAAAAAAACASiieAAAAAAAAAAAAVELxBAAAAAAAAAAAoBKKJ/U0f/583XjjjfLz81NQUJBGjRqlvXv3OsQYhqGUlBSFhYXJx8dHgwcP1u7du5uox3WzdOlS9erVS/7+/vL391dMTIz+8Y9/mM+7cm7VmT9/viwWi5KSksw2V84xJSVFFovF4SskJMR83pVzq/Dbb7/pgQceUGBgoHx9fXX99dcrNzfXfN6Vc+zcuXOV989isWjy5MmSXDs3STp79qyefvppRUREyMfHR1dffbWeffZZnTt3zoxx5RyPHz+upKQkderUST4+Pho4cKC2b99uPu/KucG1vP7664qIiFDr1q3Vt29f/c///E9Td6lGzvi9ZbfbNXXqVHXo0EFt2rTRyJEjdfDgwUbN45tvvtGIESMUFhYmi8Wijz/+2OF5Z+VRVFSkxMRE2Ww22Ww2JSYm6tixY02S0/jx46u8dwMGDGjWOUnOm8s3p9xqk5Mrvl/O+LukueVUm7xc8b0CquNK85H6uNQcxlU5Y07T3DljjtPcufu1ywrOmgM1Zy3lOq0z5kdOZ6Be4uPjjeXLlxu7du0y8vLyjDvvvNO46qqrjBMnTpgxL774ouHn52d89NFHxs6dO417773XCA0NNUpKSpqw57Wzbt0647PPPjP27t1r7N2713jqqacMLy8vY9euXYZhuHZuF9q2bZvRuXNno1evXsbjjz9utrtyjnPmzDGuu+46Iz8/3/wqLCw0n3fl3AzDMI4ePWp06tTJGD9+vLF161Zj3759xoYNG4xffvnFjHHlHAsLCx3eu6ysLEOS8fXXXxuG4dq5GYZhPP/880ZgYKDx6aefGvv27TM+/PBDo23btsaiRYvMGFfOccyYMUaPHj2M7Oxs4+effzbmzJlj+Pv7GwcPHjQMw7Vzg+tIT083vLy8jLffftv48ccfjccff9xo06aNceDAgabuWrWc8XvrscceM6688kojKyvL+Pbbb43bbrvN6N27t3H27NlGy+Pzzz83Zs+ebXz00UeGJGPt2rUOzzsrj2HDhhlRUVFGTk6OkZOTY0RFRRkJCQlNktO4ceOMYcOGObx3R44ccYhpbjkZhvPm8s0pt9rk5IrvlzP+LmluOdUmL1d8r4ALudp8pD4uNYdxVc6Y0zR3zpjjNHfufu2ygrPmQM1ZS7lO64z5kbNRPHGSwsJCQ5KRnZ1tGIZhnDt3zggJCTFefPFFM+bMmTOGzWYz3njjjabq5mVp37698c4777hVbsePHzciIyONrKwsY9CgQWbxxNVznDNnjtG7d+9qn3P13AzDMJ544gnj5ptvrvF5d8ixsscff9zo0qWLce7cObfI7c477zQefvhhh7bRo0cbDzzwgGEYrv3+nTp1yvDw8DA+/fRTh/bevXsbs2fPdunc4Fr69+9vPPbYYw5t1157rfHkk082UY8u7nJ/bx07dszw8vIy0tPTzZjffvvNaNWqlZGRkdGgfa/JhX+EOyuPH3/80ZBkbNmyxYzZvHmzIcn46aefGjUnwzj/B8xdd91V42uae04V6jOXb+65XZiTYbjP+1WXv0tcJSfD+L+8DMN93iu0bK42H6mPi81h3EV95jSupj5zHFfUEq5dGkb95kCuyB2v01anLvOjhsBtu5ykuLhYkhQQECBJ2rdvnwoKChQXF2fGWK1WDRo0SDk5OU3Sx/oqLy9Xenq6Tp48qZiYGLfKbfLkybrzzjs1dOhQh3Z3yPHnn39WWFiYIiIi9Kc//Un//Oc/JblHbuvWrVO/fv10zz33KCgoSH369NHbb79tPu8OOVYoLS1VWlqaHn74YVksFrfI7eabb9aXX36p//3f/5Ukff/999q0aZPuuOMOSa79/p09e1bl5eVq3bq1Q7uPj482bdrk0rnBdZSWlio3N9fh+0yS4uLimvX32eX83srNzVVZWZlDTFhYmKKioppNzs7KY/PmzbLZbIqOjjZjBgwYIJvN1mS5bty4UUFBQerataseeeQRFRYWms+5Sk71mcs399wuzKmCK79f9fm7pLnnVF1eFVz5vQJcdT5SHzXNYdxVS/qb5mL/Drsid752WVl95kCuxJ2v01ZWn/lRQ/Bs0KO3EIZhKDk5WTfffLOioqIkSQUFBZKk4OBgh9jg4GAdOHCg0ftYHzt37lRMTIzOnDmjtm3bau3aterRo4f5g+fKuUlSenq6vv32W4e9CCq4+vsXHR2t9957T127dtWhQ4f0/PPPa+DAgdq9e7fL5yZJ//znP7V06VIlJyfrqaee0rZt2zRt2jRZrVY9+OCDbpFjhY8//ljHjh3T+PHjJbn+96YkPfHEEyouLta1114rDw8PlZeX64UXXtB9990nybVz9PPzU0xMjJ577jl1795dwcHBev/997V161ZFRka6dG5wHf/+979VXl5e7fdZxfdgc3O5v7cKCgrk7e2t9u3bV4lpLjk7K4+CggIFBQVVOX5QUFCT5Dp8+HDdc8896tSpk/bt26dnnnlGt99+u3Jzc2W1Wl0ip/rO5ZtzbtXlJLnu+3U5f5c015ykmvOSXPe9Aiq44nykPi42hwkMDGzq7jWIlvI3zaX+HXY17nrt8kL1nQO5Ane/TlvhcuZHDYHiiRNMmTJFP/zwgzZt2lTlOYvF4vDYMIwqbc1Vt27dlJeXp2PHjumjjz7SuHHjlJ2dbT7vyrn9+uuvevzxx5WZmVnlE+KVuWqOw4cPN/+/Z8+eiomJUZcuXbRixQpzIyVXzU2Szp07p379+mnevHmSpD59+mj37t1aunSpHnzwQTPOlXOssGzZMg0fPlxhYWEO7a6c2wcffKC0tDStXr1a1113nfLy8pSUlKSwsDCNGzfOjHPVHFeuXKmHH35YV155pTw8PHTDDTdo7Nix+vbbb80YV80NrsWVvs8a6vdWc8zZGXlUF99Uud57773m/0dFRalfv37q1KmTPvvsM40ePbrG1zWnnJw9l28OudWUk6u+Xw3xd0lT5yTVnFePHj1c9r0CLuRK85H6uNgcJjk5uQl71vDc/b2t77/DzZW7Xru8kLPnQM2JO1+nrawh5keXg9t2XaapU6dq3bp1+vrrr9WxY0ezPSQkRJKqfKKisLCwSiWwufL29tY111yjfv36af78+erdu7deffVVt8gtNzdXhYWF6tu3rzw9PeXp6ans7Gz9/e9/l6enp5mHK+dYWZs2bdSzZ0/9/PPPbvH+hYaGmlXnCt27d9e//vUvSe7x8ydJBw4c0IYNG/TnP//ZbHOH3P7rv/5LTz75pP70pz+pZ8+eSkxM1H/+539q/vz5klw/xy5duig7O1snTpzQr7/+qm3btqmsrEwREREunxtcQ4cOHeTh4eHS32d1/b0VEhKi0tJSFRUV1RjT1JyVR0hIiA4dOlTl+IcPH24WuYaGhqpTp076+eefJTX/nC5nLt9cc6spp+q4yvt1OX+XNNecpJrzqo6rvFdABXeYj9RH5TmMu2qpf9Nc+O+wK3Hna5eVXc4cyBW483Xayi5nftQQKJ7Uk2EYmjJlitasWaOvvvpKERERDs9XXCTLysoy20pLS5Wdna2BAwc2dnedwjAM2e12t8htyJAh2rlzp/Ly8syvfv366f7771deXp6uvvpql8+xMrvdrj179ig0NNQt3r+bbrpJe/fudWj73//9X3Xq1EmS+/z8LV++XEFBQbrzzjvNNnfI7dSpU2rVyvHXj4eHh86dOyfJPXKUzv/hFBoaqqKiIn3xxRe666673CY3NG/e3t7q27evw/eZJGVlZbnM91ldf2/17dtXXl5eDjH5+fnatWtXs8nZWXnExMSouLhY27ZtM2O2bt2q4uLiZpHrkSNH9Ouvvyo0NFRS883JGXP55pbbpXKqjqu8Xxeqy98lrpKT9H95VcdV3yu0XO4wH6mPynMYd9VS/6a58N9hV9BSrl06Yw7kitzpOu3F1GV+1FAdQD38x3/8h2Gz2YyNGzca+fn55tepU6fMmBdffNGw2WzGmjVrjJ07dxr33XefERoaapSUlDRhz2tn1qxZxjfffGPs27fP+OGHH4ynnnrKaNWqlZGZmWkYhmvnVpNBgwYZjz/+uPnYlXOcPn26sXHjRuOf//ynsWXLFiMhIcHw8/Mz9u/fbxiGa+dmGIaxbds2w9PT03jhhReMn3/+2Vi1apXh6+trpKWlmTGunmN5eblx1VVXGU888USV51w9t3HjxhlXXnml8emnnxr79u0z1qxZY3To0MGYOXOmGePKOWZkZBj/+Mc/jH/+859GZmam0bt3b6N///5GaWmpYRiunRtcR3p6uuHl5WUsW7bM+PHHH42kpCSjTZs25u+B5sYZv7cee+wxo2PHjsaGDRuMb7/91rj99tuN3r17G2fPnm20PI4fP2589913xnfffWdIMhYuXGh89913xoEDB5yax7Bhw4xevXoZmzdvNjZv3mz07NnTSEhIaPScjh8/bkyfPt3Iyckx9u3bZ3z99ddGTEyMceWVVzbrnAzDeXP55pTbpXJy1ffLGX+XNLecLpWXq75XwIVcbT5SH5eaw7gqZ8xpmjtnzHGaO3e/dlnBWXOg5qylXKd1xvzI2Sie1JOkar+WL19uxpw7d86YM2eOERISYlitVuPWW281du7c2XSdroOHH37Y6NSpk+Ht7W1cccUVxpAhQ8wfSMNw7dxqcmHxxJVzvPfee43Q0FDDy8vLCAsLM0aPHm3s3r3bfN6Vc6uwfv16IyoqyrBarca1115rvPXWWw7Pu3qOX3zxhSHJ2Lt3b5XnXD23kpIS4/HHHzeuuuoqo3Xr1sbVV19tzJ4927Db7WaMK+f4wQcfGFdffbXh7e1thISEGJMnTzaOHTtmPu/KucG1vPbaa+bv8htuuMHIzs5u6i7VyBm/t06fPm1MmTLFCAgIMHx8fIyEhATjX//6V6Pm8fXXX1c7Pxw3bpxT8zhy5Ihx//33G35+foafn59x//33G0VFRY2e06lTp4y4uDjjiiuuMLy8vIyrrrrKGDduXJX+NrecDMN5c/nmlNulcnLV98sZf5c0t5wulZervldAdVxpPlIfl5rDuCpnzGmaO2fMcZo7d792WcFZc6DmrKVcp3XG/MjZLIZhGE5cyAIAAAAAAAAAAODS2PMEAAAAAAAAAACgEoonAAAAAAAAAAAAlVA8AQAAAAAAAAAAqITiCQAAAAAAAAAAQCUUTwAAAAAAAAAAACqheAKgWp07d9b48eObuhsAAABOtX//flksFqWmpjZ1VwAAAFzO77//rpSUFOXl5TV1V4AG59nUHQAAAACAxhIaGqrNmzerS5cuTd0VAAAAl/P7779r7ty56ty5s66//vqm7g7QoFh5AgAAAKBZOn36tNOPabVaNWDAAF1xxRVOPzYAAEBzYBhGredRp0+flmEYDdwjwDVRPAHcVEpKiiwWi7777juNHj1a/v7+stlseuCBB3T48GEzrqysTDNnzlRISIh8fX118803a9u2bVWOd/jwYU2aNEk9evRQ27ZtFRQUpNtvv13/8z//Y8YYhqHIyEjFx8dXef2JEydks9k0efJkSdK5c+f0/PPPq1u3bvLx8VG7du3Uq1cvvfrqqw0wGgAAoKnUdk7SuXNnJSQkaM2aNerTp49at26tuXPnSpIKCgo0ceJEdezYUd7e3oqIiNDcuXN19uxZSefnM0FBQUpMTKxy/mPHjsnHx0fJycmSar5t16ZNmzRkyBD5+fnJ19dXAwcO1GeffVZtLhdKTU2VxWLR/v37zbavvvpKgwcPVmBgoHx8fHTVVVfpj3/8o06dOlWvcQQAALXz888/a+zYsQoKCpLValX37t312muvmc9v3LhRFotFq1ev1hNPPKHQ0FC1bdtWI0aM0KFDh3T8+HE9+uij6tChgzp06KCHHnpIJ06ccDiHxWLRlClT9Oabb6pr166yWq3q0aOH0tPTL9q3usxZzpw5o+nTp+v666+XzWZTQECAYmJi9Mknn1R5bUV/3njjDXXv3l1Wq1UrVqyoElcxZ8nMzNTDDz+sK664Qr6+vrLb7frll1/00EMPKTIyUr6+vrryyis1YsQI7dy502HsbrzxRknSQw89JIvFIovFopSUFDNmx44dGjlypAICAtS6dWv16dNH//3f/33RcQGaK27bBbi5P/zhDxozZowee+wx7d69W88884x+/PFHbd26VV5eXnrkkUf03nvvacaMGYqNjdWuXbs0evRoHT9+3OE4R48elSTNmTNHISEhOnHihNauXavBgwfryy+/1ODBg2WxWDR16lQlJSXp559/VmRkpPn69957TyUlJWbxZMGCBUpJSdHTTz+tW2+9VWVlZfrpp5907NixRhsbAADQeC41J5Gkb7/9Vnv27NHTTz+tiIgItWnTRgUFBerfv79atWqlv/zlL+rSpYs2b96s559/Xvv379fy5cvl5eWlBx54QG+88YZee+01+fv7m+d9//33debMGT300EM19i07O1uxsbHq1auXli1bJqvVqtdff10jRozQ+++/r3vvvbdOue7fv1933nmnbrnlFr377rtq166dfvvtN2VkZKi0tFS+vr71G0QAAHBRP/74owYOHKirrrpKf/vb3xQSEqIvvvhC06ZN07///W/NmTPHjH3qqad02223KTU1Vfv379eMGTN03333ydPTU71799b777+v7777Tk899ZT8/Pz097//3eFc69at09dff61nn31Wbdq00euvv26+/u677662f3WZs9jtdh09elQzZszQlVdeqdLSUm3YsEGjR4/W8uXL9eCDDzoc++OPP9b//M//6C9/+YtCQkIUFBRU4zg9/PDDuvPOO7Vy5UqdPHlSXl5e+v333xUYGKgXX3xRV1xxhY4ePaoVK1YoOjpa3333nbp166YbbrhBy5cv10MPPaSnn35ad955pySpY8eOkqSvv/5aw4YNU3R0tN544w3ZbDalp6fr3nvv1alTp9hbF67HAOCW5syZY0gy/vM//9OhfdWqVYYkIy0tzdizZ89FY8aNG1fj8c+ePWuUlZUZQ4YMMf7whz+Y7SUlJYafn5/x+OOPO8T36NHDuO2228zHCQkJxvXXX1//BAEAgEuozZzEMAyjU6dOhoeHh7F3716HuIkTJxpt27Y1Dhw44ND+17/+1ZBk7N692zAMw/jhhx8MScZbb73lENe/f3+jb9++5uN9+/YZkozly5ebbQMGDDCCgoKM48ePm21nz541oqKijI4dOxrnzp1zyOVCy5cvNyQZ+/btMwzDMP6f/+f/MSQZeXl5tRkiAADgJPHx8UbHjh2N4uJih/YpU6YYrVu3No4ePWp8/fXXhiRjxIgRDjFJSUmGJGPatGkO7aNGjTICAgIc2iQZPj4+RkFBgdl29uxZ49prrzWuueaai/axtnOWC1Vch5kwYYLRp0+fKv2x2WzG0aNHL3ruijnLgw8+eNG4ivOVlpYakZGRDvO47du3V5lLVbj22muNPn36GGVlZQ7tCQkJRmhoqFFeXn7J8wLNCbftAtzc/fff7/B4zJgx8vT01Ndff62vv/76ojEXeuONN3TDDTeodevW8vT0lJeXl7788kvt2bPHjPHz89NDDz2k1NRUnTx5UtL521b8+OOPmjJlihnXv39/ff/995o0aZK++OILlZSUOC1nAADQ/FxsTlKhV69e6tq1q0Pcp59+qttuu01hYWE6e/as+TV8+HBJ51eNSFLPnj3Vt29fLV++3Hztnj17tG3bNj388MM19uvkyZPaunWr7r77brVt29Zs9/DwUGJiog4ePKi9e/fWKdfrr79e3t7eevTRR7VixQr985//rNPrAQBA3Z05c0Zffvml/vCHP8jX19dh3nDHHXfozJkz2rJlixmfkJDg8Pru3btLkrmaonL70aNHq9y6a8iQIQoODjYfe3h46N5779Uvv/yigwcP1tjPusxZPvzwQ910001q27ateR1m2bJlDtdhKtx+++1q3759jeet7I9//GOVtrNnz2revHnq0aOHvL295enpKW9vb/3888/Vnu9Cv/zyi3766Sdzznfh+Ofn59d5TgU0NYongJsLCQlxeOzp6anAwEAdOXJER44cuWhMZQsXLtR//Md/KDo6Wh999JG2bNmi7du3a9iwYVU2IZs6daqOHz+uVatWSZKWLFmijh076q677jJjZs2apb/+9a/asmWLhg8frsDAQA0ZMkQ7duxwWu4AAKD5uNicpEJoaGiV1x06dEjr16+Xl5eXw9d1110nSfr3v/9txj788MPavHmzfvrpJ0nS8uXLZbVadd9999XYr6KiIhmGUe25w8LCJMmhj7XRpUsXbdiwQUFBQZo8ebK6dOmiLl26sLcbAAAN6MiRIzp79qwWL15cZd5wxx13SHKcNwQEBDi83tvb+6LtZ86ccWi/cG5Tue1Sc4fazFnWrFmjMWPG6Morr1RaWpo2b96s7du36+GHH67SF6n6eVRNqotNTk7WM888o1GjRmn9+vXaunWrtm/frt69e9dq8/lDhw5JkmbMmFFl/CdNmiTJcfwBV8CeJ4CbKygo0JVXXmk+Pnv2rI4cOaLAwECzQFJTTGVpaWkaPHiwli5d6tB+4d4oknTNNddo+PDheu211zR8+HCtW7dOc+fOlYeHhxnj6emp5ORkJScn69ixY9qwYYOeeuopxcfH69dff+Ve4AAAuJmLzUkqVLcZe4cOHdSrVy+98MIL1R63osAhSffdd5+Sk5OVmpqqF154QStXrtSoUaMu+inM9u3bq1WrVsrPz6/y3O+//272QZJat24t6fw9yK1WqxlX3YWAW265RbfccovKy8u1Y8cOLV68WElJSQoODtaf/vSnGvsDAADqp3379ubK0Yr9Vi8UERHhsAH65SgoKKix7cIPpF6oNnOWtLQ0RURE6IMPPnCYI9nt9mqPWd08qibVxaalpenBBx/UvHnzHNr//e9/q127dpc8ZsV8adasWRo9enS1Md26dat1H4HmgOIJ4OZWrVqlvn37mo//+7//W2fPntXgwYPN9ppiKrNYLA4XCSTphx9+0ObNmxUeHl7lvI8//rji4uI0btw4eXh46JFHHqmxj+3atdPdd9+t3377TUlJSdq/f7969OhRr3wBAEDzdLE5ycUkJCTo888/V5cuXS55K4r27dtr1KhReu+99xQTE6OCgoKL3rJLktq0aaPo6GitWbNGf/3rX+Xj4yNJOnfunNLS0tSxY0fzVmKdO3eWdH4OdOONN5rHWL9+fY3H9/DwUHR0tK699lqtWrVK3377LcUTAAAagK+vr2677TZ999136tWrl7lipKF8+eWXOnTokHnrrvLycn3wwQfq0qWLuYF6TWozZ7FYLPL29nYodBQUFOiTTz5xfjKq/rrPZ599pt9++03XXHON2VYRc+FqlG7duikyMlLff/99lQIM4KoongBubs2aNfL09FRsbKx2796tZ555Rr1799aYMWPk7e2tBx54QIsWLZKXl5eGDh2qXbt26a9//av8/f0djpOQkKDnnntOc+bM0aBBg7R37149++yzioiIqFJokaTY2Fj16NFDX3/9tR544AEFBQU5PD9ixAhFRUWpX79+uuKKK3TgwAEtWrRInTp1UmRkZIOOCQAAaHwXm5NczLPPPqusrCwNHDhQ06ZNU7du3XTmzBnt379fn3/+ud544w2HCxQPP/ywPvjgA02ZMkUdO3bU0KFDL9m3+fPnKzY2VrfddptmzJghb29vvf7669q1a5fef/9986LFHXfcoYCAAE2YMEHPPvusPD09lZqaql9//dXheG+88Ya++uor3Xnnnbrqqqt05swZvfvuu5JUq/4AAID6efXVV3XzzTfrlltu0X/8x3+oc+fOOn78uH755RetX79eX331ldPO1aFDB91+++165pln1KZNG73++uv66aeflJ6ebsYcOHBAXbp00bhx47Rs2TKH119qzpKQkKA1a9Zo0qRJuvvuu/Xrr7/queeeU2hoqH7++edL9u+9997Tww8/rHfffVcPPvjgJeMTEhKUmpqqa6+9Vr169VJubq5efvnlKoWgLl26yMfHR6tWrVL37t3Vtm1bhYWFKSwsTG+++aaGDx+u+Ph4jR8/XldeeaWOHj2qPXv26Ntvv9WHH354yX4AzQnFE8DNrVmzRikpKVq6dKksFotGjBihRYsWmZ/AWLZsmYKDg5Wamqq///3vuv766/XRRx9V+UTk7NmzderUKS1btkwLFixQjx499MYbb2jt2rXauHFjteceM2aMUlJSHDaKr3Dbbbfpo48+0jvvvKOSkhKFhIQoNjZWzzzzjLy8vJw+DgAAoGldak5Sk9DQUO3YsUPPPfecXn75ZR08eFB+fn6KiIjQsGHDqqxGGTp0qMLDw/Xrr79q9uzZatXq0ts8Dho0SF999ZXmzJmj8ePH69y5c+rdu7fWrVvnsJmsv7+/MjIylJSUpAceeEDt2rXTn//8Zw0fPlx//vOfzbjrr79emZmZmjNnjgoKCtS2bVtFRUVp3bp1iouLq+PIAQCA2urRo4e+/fZbPffcc3r66adVWFiodu3aKTIy0tz3xFlGjhyp6667Tk8//bT+9a9/qUuXLlq1apXuvfdeM8YwDJWXl6u8vLzK6y81Z3nooYdUWFioN954Q++++66uvvpqPfnkkzp48KDmzp17yf6dO3dO5eXlOnfuXK3yefXVV+Xl5aX58+frxIkTuuGGG7RmzRo9/fTTDnG+vr569913NXfuXMXFxamsrExz5sxRSkqKbrvtNm3btk0vvPCCkpKSVFRUpMDAQPXo0eOSH5gBmiOLYRhGU3cCgPOlpKRo7ty5Onz4sHnfycbWr18/WSwWbd++vUnODwAAml5zmJMAAAA4k8Vi0eTJk7VkyZKm7gqABsTKEwBOVVJSol27dunTTz9Vbm6u1q5d29RdAgAAAAAAAIA6oXgCwKm+/fZb3XbbbQoMDNScOXM0atSopu4SAAAAAAAAANQJt+0CAAAAAAAAAACo5NK7JwIAAAAAAAAAALQgFE8AAAAAAAAAAAAqoXgCAAAAAAAAAABQCcUTAAAAAAAAAACASjybugMN5dy5c/r999/l5+cni8XS1N0BAOCSDMPQ8ePHFRYWplat+HxDS8T8BQDgapi/gPkLAMCV1GXu4rbFk99//13h4eFN3Q0AAOrs119/VceOHZu6G2gCzF8AAK6K+UvLxfwFAOCKajN3uaziyfz58/XUU0/p8ccf16JFiySdr9zMnTtXb731loqKihQdHa3XXntN1113nfk6u92uGTNm6P3339fp06c1ZMgQvf766w6dLSoq0rRp07Ru3TpJ0siRI7V48WK1a9euVn3z8/OTdH4Q/P39LydNSVJZWZkyMzMVFxcnLy+vyz5eS8G41R9jVz+MW/0wbvXnzLErKSlReHi4+TsMLQ/zF+djDBgDiTGQGIMKjIPzx4D5C5w9f2lq/Dtx+RhD52AcLx9j6BzuNo51mbvUu3iyfft2vfXWW+rVq5dD+4IFC7Rw4UKlpqaqa9euev755xUbG6u9e/eaHUpKStL69euVnp6uwMBATZ8+XQkJCcrNzZWHh4ckaezYsTp48KAyMjIkSY8++qgSExO1fv36WvWvYqmov7+/0y4++Pr6yt/f3y2+SRoL41Z/jF39MG71w7jVX0OMHbc7aLmYvzgfY8AYSIyBxBhUYBwabgyYv7Rczp6/NDX+nbh8jKFzMI6XjzF0Dncdx9rMXep1Q9ITJ07o/vvv19tvv6327dub7YZhaNGiRZo9e7ZGjx6tqKgorVixQqdOndLq1aslScXFxVq2bJn+9re/aejQoerTp4/S0tK0c+dObdiwQZK0Z88eZWRk6J133lFMTIxiYmL09ttv69NPP9XevXvr02UAAAAAAAAAAIBaqdfKk8mTJ+vOO+/U0KFD9fzzz5vt+/btU0FBgeLi4sw2q9WqQYMGKScnRxMnTlRubq7KysocYsLCwhQVFaWcnBzFx8dr8+bNstlsio6ONmMGDBggm82mnJwcdevWrUqf7Ha77Ha7+bikpETS+cpYWVlZfdJ0UHEMZxyrJWHc6o+xqx/GrX4Yt/pz5tgx/gAAAAAAAM1DnYsn6enp+vbbb7V9+/YqzxUUFEiSgoODHdqDg4N14MABM8bb29thxUpFTMXrCwoKFBQUVOX4QUFBZsyF5s+fr7lz51Zpz8zMlK+vby0yq52srCynHaslYdzqj7GrH8atfhi3+nPG2J06dcoJPQEAAAAAAMDlqlPx5Ndff9Xjjz+uzMxMtW7dusa4C+8XZhjGJe8hdmFMdfEXO86sWbOUnJxsPq7Y+CUuLs5p9wzPyspSbGysW93braExbvXH2NUP41Y/jFv9OXPsKlZNAgAAAAAAoGnVqXiSm5urwsJC9e3b12wrLy/XN998oyVLlpj7kRQUFCg0NNSMKSwsNFejhISEqLS0VEVFRQ6rTwoLCzVw4EAz5tChQ1XOf/jw4SqrWipYrVZZrdYq7V5eXk69EOjs47UUjFv9MXb1w7jVT3Mdt85PftbUXajRz8+dvw2lM8auOY493ENUyheylze/jXz3v3hnU3cBAAAAAPD/q+76i9XD0IL+Tf93ZVP8/VinDeOHDBminTt3Ki8vz/zq16+f7r//fuXl5enqq69WSEiIw61LSktLlZ2dbRZG+vbtKy8vL4eY/Px87dq1y4yJiYlRcXGxtm3bZsZs3bpVxcXFZgwAAAAAAAAAAEBDqNPKEz8/P0VFRTm0tWnTRoGBgWZ7UlKS5s2bp8jISEVGRmrevHny9fXV2LFjJUk2m00TJkzQ9OnTFRgYqICAAM2YMUM9e/bU0KFDJUndu3fXsGHD9Mgjj+jNN9+UJD366KNKSEiodrN4AAAAAAAAAAAAZ6nzhvGXMnPmTJ0+fVqTJk1SUVGRoqOjlZmZKT8/PzPmlVdekaenp8aMGaPTp09ryJAhSk1NlYeHhxmzatUqTZs2TXFx52+HMnLkSC1ZssTZ3QUAAAAAAAAAAHBw2cWTjRs3Ojy2WCxKSUlRSkpKja9p3bq1Fi9erMWLF9cYExAQoLS0tMvtHgAAAAAAAAAAQJ3Uac8TAAAAAAAAAAAAd0fxBAAAAAAAAAAAoBKKJwAAAAAAAAAAAJVQPAEAAAAAAAAAAKiE4gkAAAAAAAAAAEAlFE8AAAAAAAAAAAAqoXgCAAAAAAAAAABQCcUTAAAAAAAAAACASiieAAAAAAAAAAAAVELxBAAAAAAAAAAAoBKKJwAAAAAAAAAAAJVQPAEAAAAAAAAAAKiE4gkAAAAAAAAAAEAlFE8AAIBbW7p0qXr16iV/f3/5+/srJiZG//jHP8znDcNQSkqKwsLC5OPjo8GDB2v37t0Ox7Db7Zo6dao6dOigNm3aaOTIkTp48KBDTFFRkRITE2Wz2WSz2ZSYmKhjx441RooAAAAAAMDJKJ4AAAC31rFjR7344ovasWOHduzYodtvv1133XWXWSBZsGCBFi5cqCVLlmj79u0KCQlRbGysjh8/bh4jKSlJa9euVXp6ujZt2qQTJ04oISFB5eXlZszYsWOVl5enjIwMZWRkKC8vT4mJiY2eLwAAAAAAuHwUTwAAgFsbMWKE7rjjDnXt2lVdu3bVCy+8oLZt22rLli0yDEOLFi3S7NmzNXr0aEVFRWnFihU6deqUVq9eLUkqLi7WsmXL9Le//U1Dhw5Vnz59lJaWpp07d2rDhg2SpD179igjI0PvvPOOYmJiFBMTo7fffluffvqp9u7d25TpAwAAFzN//nzdeOON8vPzU1BQkEaNGlVlPsHKWQAAGp5nU3cAAACgsZSXl+vDDz/UyZMnFRMTo3379qmgoEBxcXFmjNVq1aBBg5STk6OJEycqNzdXZWVlDjFhYWGKiopSTk6O4uPjtXnzZtlsNkVHR5sxAwYMkM1mU05Ojrp161Ztf+x2u+x2u/m4pKREklRWVqaysrLLzrfiGNZWxmUfqyE4I8fanqMxztVcMQaMgcQYVGAcnD8GLXksG0p2drYmT56sG2+8UWfPntXs2bMVFxenH3/8UW3atJH0fytnU1NT1bVrVz3//POKjY3V3r175efnJ+n8ytn169crPT1dgYGBmj59uhISEpSbmysPDw9J51fOHjx4UBkZGZKkRx99VImJiVq/fn3TJA8AQDNC8QQAALi9nTt3KiYmRmfOnFHbtm21du1a9ejRQzk5OZKk4OBgh/jg4GAdOHBAklRQUCBvb2+1b9++SkxBQYEZExQUVOW8QUFBZkx15s+fr7lz51Zpz8zMlK+vb92SvIjn+p1z2rGc6fPPP2+0c2VlZTXauZorxoAxkBiDCoyD88bg1KlTTjkO/k9FIaPC8uXLFRQUpNzcXN16661VVs5K0ooVKxQcHKzVq1dr4sSJ5srZlStXaujQoZKktLQ0hYeHa8OGDYqPjzdXzm7ZssX8AMjbb7+tmJgY7d27t8YPfwAA0FJQPAEAAG6vW7duysvL07Fjx/TRRx9p3Lhxys7ONp+3WCwO8YZhVGm70IUx1cVf6jizZs1ScnKy+bikpETh4eGKi4uTv7//JfO6lLKyMmVlZemZHa1kP3fxfJrCrpT4Bj9HxRjExsbKy8urwc/XHDEGjIHEGFRgHJw/BhWrJtFwiouLJUkBAQGS5PYrZ5saK9QuH2PoHIzj5WMM687qUfWuBRV3MmjqOxo0xapZiicAAMDteXt765prrpEk9evXT9u3b9err76qJ554QtL5lSOhoaFmfGFhobkaJSQkRKWlpSoqKnJYfVJYWKiBAweaMYcOHapy3sOHD1dZ1VKZ1WqV1Wqt0u7l5eXUi3r2cxbZy5tf8aQxL1w6e0xdEWPAGEiMQQXGwXlj0NLHsaEZhqHk5GTdfPPNioqKkiRzVau7r5xtaqxQu3yMoXMwjpePMay9Bf1rfq6p72jgrDsX1GXVLMUTAADQ4hiGIbvdroiICIWEhCgrK0t9+vSRJJWWlio7O1svvfSSJKlv377y8vJSVlaWxowZI0nKz8/Xrl27tGDBAklSTEyMiouLtW3bNvXvf362uXXrVhUXF5sFFgAAgLqaMmWKfvjhB23atKnKc+66crapsULt8jGGzsE4Xj7GsO6iUr6o0mZtZei5fuea/I4GzrpzQV1WzVI8AQAAbu2pp57S8OHDFR4eruPHjys9PV0bN25URkaGLBaLkpKSNG/ePEVGRioyMlLz5s2Tr6+vxo4dK0my2WyaMGGCpk+frsDAQAUEBGjGjBnq2bOneQ/x7t27a9iwYXrkkUf05ptvSjq/4WpCQgL3CwcAAPUydepUrVu3Tt988406duxotoeEhEhy/5WzTc3d8mkKjKFzMI6XjzGsvYvdsaCp72jgrPewLsdp5ZQzAgAANFOHDh1SYmKiunXrpiFDhmjr1q3KyMhQbGysJGnmzJlKSkrSpEmT1K9fP/3222/KzMyUn5+feYxXXnlFo0aN0pgxY3TTTTfJ19dX69evl4eHhxmzatUq9ezZU3FxcYqLi1OvXr20cuXKRs8XAAC4NsMwNGXKFK1Zs0ZfffWVIiIiHJ6vvHK2QsXK2YrCSOWVsxUqVs5WxFReOVuBlbMAAPwfVp4AAAC3tmzZsos+b7FYlJKSopSUlBpjWrdurcWLF2vx4sU1xgQEBCgtLa2+3QQAAJAkTZ48WatXr9Ynn3wiPz8/c/8Rm80mHx8fVs4CANBIKJ4AAAAAAAA0E0uXLpUkDR482KF9+fLlGj9+vKTzK2dPnz6tSZMmqaioSNHR0dWunPX09NSYMWN0+vRpDRkyRKmpqVVWzk6bNk1xcXGSpJEjR2rJkiUNmyAAAC6C4gkAAAAAAEAzYRjGJWNYOQsAQMNjzxMAAAAAAAAAAIBK6lQ8Wbp0qXr16iV/f3/5+/srJiZG//jHP8znDcNQSkqKwsLC5OPjo8GDB2v37t0Ox7Db7Zo6dao6dOigNm3aaOTIkTp48KBDTFFRkRITE2Wz2WSz2ZSYmKhjx47VP0sAAAAAAAAAAIBaqlPxpGPHjnrxxRe1Y8cO7dixQ7fffrvuuusus0CyYMECLVy4UEuWLNH27dsVEhKi2NhYHT9+3DxGUlKS1q5dq/T0dG3atEknTpxQQkKCysvLzZixY8cqLy9PGRkZysjIUF5enhITE52UMgAAAAAAAAAAQM3qtOfJiBEjHB6/8MILWrp0qbZs2aIePXpo0aJFmj17tkaPHi1JWrFihYKDg7V69WpNnDhRxcXFWrZsmVauXKmhQ4dKktLS0hQeHq4NGzYoPj5ee/bsUUZGhrZs2aLo6GhJ0ttvv62YmBjt3btX3bp1c0beAAAAAAAAAAAA1ar3hvHl5eX68MMPdfLkScXExGjfvn0qKChQXFycGWO1WjVo0CDl5ORo4sSJys3NVVlZmUNMWFiYoqKilJOTo/j4eG3evFk2m80snEjSgAEDZLPZlJOTU2PxxG63y263m49LSkokSWVlZSorK6tvmqaKYzjjWC0J41Z/jF39MG7109zHzepx6U0zm4ozx665jj8AAAAAAEBLU+fiyc6dOxUTE6MzZ86obdu2Wrt2rXr06KGcnBxJUnBwsEN8cHCwDhw4IEkqKCiQt7e32rdvXyWmoKDAjAkKCqpy3qCgIDOmOvPnz9fcuXOrtGdmZsrX17duSV5EVlaW047VkjBu9cfY1Q/jVj/NddwW9G/qHtSsYsycMXanTp267GMAAAAAAADg8tW5eNKtWzfl5eXp2LFj+uijjzRu3DhlZ2ebz1ssFod4wzCqtF3owpjq4i91nFmzZik5Odl8XFJSovDwcMXFxcnf3/+SeV1KWVmZsrKyFBsbKy8vr8s+XkvBuNUfY1c/jFv9NPdxi0r5oqm7UKPvZt/utLGrWDUJAAAAAACAplXn4om3t7euueYaSVK/fv20fft2vfrqq3riiScknV85EhoaasYXFhaaq1FCQkJUWlqqoqIih9UnhYWFGjhwoBlz6NChKuc9fPhwlVUtlVmtVlmt1irtXl5eTr0Q6OzjtRSMW/0xdvXDuNVPcx03e/nFi/BNqWK8nDF2zXHsAQAAAAAAWqJWl3sAwzBkt9sVERGhkJAQh9uWlJaWKjs72yyM9O3bV15eXg4x+fn52rVrlxkTExOj4uJibdu2zYzZunWriouLzRgAAAAAAAAAAICGUqeVJ0899ZSGDx+u8PBwHT9+XOnp6dq4caMyMjJksViUlJSkefPmKTIyUpGRkZo3b558fX01duxYSZLNZtOECRM0ffp0BQYGKiAgQDNmzFDPnj01dOhQSVL37t01bNgwPfLII3rzzTclSY8++qgSEhJq3CweAAAAAAAAAADAWepUPDl06JASExOVn58vm82mXr16KSMjQ7GxsZKkmTNn6vTp05o0aZKKiooUHR2tzMxM+fn5mcd45ZVX5OnpqTFjxuj06dMaMmSIUlNT5eHhYcasWrVK06ZNU1xcnCRp5MiRWrJkiTPyBQAAAAAAAAAAuKg6FU+WLVt20ectFotSUlKUkpJSY0zr1q21ePFiLV68uMaYgIAApaWl1aVrAAAAAAAAAAAATnHZe54AAAAAAAAAAAC4E4onAAAAAAAAAAAAlVA8AQAAAAAAAAAAqITiCQAAAAAAAAAAQCUUTwAAAAAAAAAAACqheAIAAAAAAAAAAFAJxRMAAAAAAAAAAIBKKJ4AAAAAAAAAAABUQvEEAAAAAAAAAACgEoonAAAAAAAAAAAAlVA8AQAAAAAAAAAAqITiCQAAAAAAAAAAQCUUTwAAAAAAAAAAACqheAIAAAAAAAAAAFAJxRMAAAAAAAAAAIBKKJ4AAAAAAAAAAABUQvEEAAAAAAAAAACgEoonAADArc2fP1833nij/Pz8FBQUpFGjRmnv3r0OMYZhKCUlRWFhYfLx8dHgwYO1e/duhxi73a6pU6eqQ4cOatOmjUaOHKmDBw86xBQVFSkxMVE2m002m02JiYk6duxYQ6cIAAAAAACcjOIJAABwa9nZ2Zo8ebK2bNmirKwsnT17VnFxcTp58qQZs2DBAi1cuFBLlizR9u3bFRISotjYWB0/ftyMSUpK0tq1a5Wenq5NmzbpxIkTSkhIUHl5uRkzduxY5eXlKSMjQxkZGcrLy1NiYmKj5gsAAAAAAC6fZ1N3AAAAoCFlZGQ4PF6+fLmCgoKUm5urW2+9VYZhaNGiRZo9e7ZGjx4tSVqxYoWCg4O1evVqTZw4UcXFxVq2bJlWrlypoUOHSpLS0tIUHh6uDRs2KD4+Xnv27FFGRoa2bNmi6OhoSdLbb7+tmJgY7d27V926dWvcxAEAAAAAQL2x8gQAALQoxcXFkqSAgABJ0r59+1RQUKC4uDgzxmq1atCgQcrJyZEk5ebmqqyszCEmLCxMUVFRZszmzZtls9nMwokkDRgwQDabzYwBAAAAAACugZUnAACgxTAMQ8nJybr55psVFRUlSSooKJAkBQcHO8QGBwfrwIEDZoy3t7fat29fJabi9QUFBQoKCqpyzqCgIDPmQna7XXa73XxcUlIiSSorK1NZWVl9UnRQcQxrK+Oyj9UQnJFjbc/RGOdqrhgDxkBiDCowDs4fg5Y8lgAAwL1RPAEAAC3GlClT9MMPP2jTpk1VnrNYLA6PDcOo0nahC2Oqi7/YcebPn6+5c+dWac/MzJSvr+9Fz10Xz/U757RjOdPnn3/eaOfKyspqtHM1V4wBYyAxBhUYB+eNwalTp5xyHAAAgOaG4gkAAGgRpk6dqnXr1umbb75Rx44dzfaQkBBJ51eOhIaGmu2FhYXmapSQkBCVlpaqqKjIYfVJYWGhBg4caMYcOnSoynkPHz5cZVVLhVmzZik5Odl8XFJSovDwcMXFxcnf3/8ysj2vrKxMWVlZemZHK9nPXbwQ1BR2pcQ3+DkqxiA2NlZeXl4Nfr7miDFgDCTGoALj4PwxqFg1CQAA4G4ongAAALdmGIamTp2qtWvXauPGjYqIiHB4PiIiQiEhIcrKylKfPn0kSaWlpcrOztZLL70kSerbt6+8vLyUlZWlMWPGSJLy8/O1a9cuLViwQJIUExOj4uJibdu2Tf3795ckbd26VcXFxWaB5UJWq1VWq7VKu5eXl1Mv6tnPWWQvb37Fk8a8cOnsMXVFjAFjIDEGFRgH541BSx9HAADgviieAAAAtzZ58mStXr1an3zyifz8/Mz9R2w2m3x8fGSxWJSUlKR58+YpMjJSkZGRmjdvnnx9fTV27FgzdsKECZo+fboCAwMVEBCgGTNmqGfPnho6dKgkqXv37ho2bJgeeeQRvfnmm5KkRx99VAkJCerWrVvTJA8AAAAAAOqF4gkAAHBrS5culSQNHjzYoX358uUaP368JGnmzJk6ffq0Jk2apKKiIkVHRyszM1N+fn5m/CuvvCJPT0+NGTNGp0+f1pAhQ5SamioPDw8zZtWqVZo2bZri4uIkSSNHjtSSJUsaNkEAAAAAAOB0reoSPH/+fN14443y8/NTUFCQRo0apb179zrEGIahlJQUhYWFycfHR4MHD9bu3bsdYux2u6ZOnaoOHTqoTZs2GjlypA4ePOgQU1RUpMTERNlsNtlsNiUmJurYsWP1yxIAALRYhmFU+1VROJHOb/SekpKi/Px8nTlzRtnZ2YqKinI4TuvWrbV48WIdOXJEp06d0vr16xUeHu4QExAQoLS0NJWUlKikpERpaWlq165dI2QJAAAAAACcqU7Fk+zsbE2ePFlbtmxRVlaWzp49q7i4OJ08edKMWbBggRYuXKglS5Zo+/btCgkJUWxsrI4fP27GJCUlae3atUpPT9emTZt04sQJJSQkqLy83IwZO3as8vLylJGRoYyMDOXl5SkxMdEJKQMAAAAAAAAAANSsTrftysjIcHi8fPlyBQUFKTc3V7feeqsMw9CiRYs0e/ZsjR49WpK0YsUKBQcHa/Xq1Zo4caKKi4u1bNkyrVy50rxHeFpamsLDw7VhwwbFx8drz549ysjI0JYtWxQdHS1JevvttxUTE6O9e/dy33AAAAAAAAAAANBgLmvPk+LiYknnb1EhSfv27VNBQYF5n29JslqtGjRokHJycjRx4kTl5uaqrKzMISYsLExRUVHKyclRfHy8Nm/eLJvNZhZOJGnAgAGy2WzKycmptnhit9tlt9vNxyUlJZKksrIylZWVXU6a5nEq/xe1w7jVH2NXP4xb/TT3cbN6GE3dhRo5c+ya6/gDAAAAAAC0NPUunhiGoeTkZN18883mPcELCgokScHBwQ6xwcHBOnDggBnj7e2t9u3bV4mpeH1BQYGCgoKqnDMoKMiMudD8+fM1d+7cKu2ZmZny9fWtY3Y1y8rKctqxWhLGrf4Yu/ph3OqnuY7bgv5N3YOaVYyZM8bu1KlTl30MAAAAAAAAXL56F0+mTJmiH374QZs2barynMVicXhsGEaVtgtdGFNd/MWOM2vWLCUnJ5uPS0pKFB4erri4OPn7+1/03LVRVlamrKwsxcbGysvL67KP11IwbvXH2NUP41Y/zX3colK+aOou1Oi72bc7bewqVk0CAAAAAACgadWreDJ16lStW7dO33zzjTp27Gi2h4SESDq/ciQ0NNRsLywsNFejhISEqLS0VEVFRQ6rTwoLCzVw4EAz5tChQ1XOe/jw4SqrWipYrVZZrdYq7V5eXk69EOjs47UUjFv9MXb1w7jVT3MdN3v5xQvwTalivJwxds1x7AEAAAAAAFqiVnUJNgxDU6ZM0Zo1a/TVV18pIiLC4fmIiAiFhIQ43LqktLRU2dnZZmGkb9++8vLycojJz8/Xrl27zJiYmBgVFxdr27ZtZszWrVtVXFxsxgAAAAAAAAAAADSEOq08mTx5slavXq1PPvlEfn5+5v4jNptNPj4+slgsSkpK0rx58xQZGanIyEjNmzdPvr6+Gjt2rBk7YcIETZ8+XYGBgQoICNCMGTPUs2dPDR06VJLUvXt3DRs2TI888ojefPNNSdKjjz6qhISEajeLBwAAAAAAAAAAcJY6FU+WLl0qSRo8eLBD+/LlyzV+/HhJ0syZM3X69GlNmjRJRUVFio6OVmZmpvz8/Mz4V155RZ6enhozZoxOnz6tIUOGKDU1VR4eHmbMqlWrNG3aNMXFxUmSRo4cqSVLltQnRwAAgP+PvbuPi6rO////HBAGMRhFlqvEi8zMQs3VVOhCTUVNpLJNyyLbTC1T46NWmrViF1rUpruQWa2rlprtfsuydFEs0/WG18mm1rr6SS1XkTIEvBoQzu8Pf8xnRkAZnGGG4XG/3bjpeZ/3nHmd15yB98zrvM8BAAAAAACoMaeKJ4ZhXLaPyWRSWlqa0tLSqu0TFBSkjIwMZWRkVNsnLCxMS5YscSY8AAAAAAAAAACAK+bUPU8AAAAAAAAAAAB8HcUTAAAAAAAAL7Jx40YNGTJEMTExMplM+vTTTx3WG4ahtLQ0xcTEqHHjxurdu7f27t3r0MdqtWrChAkKDw9XkyZNlJycrCNHjjj0KSgoUEpKiiwWiywWi1JSUnTy5Ek37x0AAPUDxRMAAAAAAAAvcvr0aXXu3Lnae7+mp6frzTffVGZmprZv366oqCj1799fxcXFtj6pqalasWKFli9frk2bNunUqVNKSkpSWVmZrc+IESOUm5urrKwsZWVlKTc3VykpKW7fPwAA6gOn7nkCAAAAAAAA9xo0aJAGDRpU5TrDMDR37lxNnz5dQ4cOlSQtXrxYkZGRWrZsmcaOHavCwkItWLBAH3zwgfr16ydJWrJkiWJjY7Vu3ToNGDBA33//vbKysrRlyxb16NFDkvTee+8pPj5e+/btU/v27etmZwEA8FLMPAEAAAAAAKgnDh48qLy8PCUmJtrazGazevXqpZycHEnSzp07VVpa6tAnJiZGcXFxtj6bN2+WxWKxFU4kqWfPnrJYLLY+AAA0ZMw8AQAAAAAAqCfy8vIkSZGRkQ7tkZGROnz4sK1PYGCgmjVrVqlPxePz8vIUERFRafsRERG2PlWxWq2yWq225aKiIklSaWmpSktLa7FH3qViH3xhXzyFHLoGebxy5NB5Zn+jcpuf4fCvp7jqdXRmOxRPAAAAAAAA6hmTyeSwbBhGpbaLXdynqv6X287s2bM1c+bMSu1r165VcHDw5cKuN7Kzsz0dQr1HDl2DPF45clhz6d2rX/dSt/K6C6QKq1evdsl2zpw5U+O+FE8AAAAAAADqiaioKEkXZo5ER0fb2vPz822zUaKiolRSUqKCggKH2Sf5+flKSEiw9Tl+/Hil7f/888+VZrXYmzZtmiZNmmRbLioqUmxsrBITExUaGnplO+cFSktLlZ2drf79+ysgIMDT4dRL5NA1yOOVI4fOi0tbU6nN7GfopW7lemGHn6zlly7Su9OetAEu2U7FjMmaoHgCAAAAAABQT7Rp00ZRUVHKzs5Wly5dJEklJSXasGGDXnvtNUlS165dFRAQoOzsbA0bNkySdOzYMe3Zs0fp6emSpPj4eBUWFmrbtm3q3v3CqcZbt25VYWGhrcBSFbPZLLPZXKk9ICDAp76c9LX98QT7HLaeusrD0VTv0KuDPR3CJXEsXjlyWHPWsuqLI9Zy0yXXu5urXkNntkPxBAAAAAAAwIucOnVKBw4csC0fPHhQubm5CgsLU8uWLZWamqpZs2apXbt2ateunWbNmqXg4GCNGDFCkmSxWDRq1ChNnjxZzZs3V1hYmKZMmaKOHTuqX79+kqQOHTpo4MCBGj16tN555x1J0pgxY5SUlKT27dvX/U4DAOBlKJ4AAAAAAAB4kR07dqhPnz625YrLZI0cOVKLFi3SM888o7Nnz2rcuHEqKChQjx49tHbtWoWEhNgeM2fOHDVq1EjDhg3T2bNn1bdvXy1atEj+/v62PkuXLtXEiROVmJgoSUpOTlZmZmYd7SUAAN6N4gkAAAAAAIAX6d27twzDqHa9yWRSWlqa0tLSqu0TFBSkjIwMZWRkVNsnLCxMS5YsuZJQAQDwWX6eDgAAAAAAAAAAAMCbUDwBAAAAAAAAAACwQ/EEAAAAAAAAAADADsUTAAAAAAAAAAAAOxRPAAAAAAAAAAAA7FA8AQAAAAAAAAAAsEPxBAAAAAAAAAAAwA7FEwAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAPi0jRs3asiQIYqJiZHJZNKnn37qsN4wDKWlpSkmJkaNGzdW7969tXfvXoc+VqtVEyZMUHh4uJo0aaLk5GQdOXLEoU9BQYFSUlJksVhksViUkpKikydPunnvAAAAAACAO1A8AQAAPu306dPq3LmzMjMzq1yfnp6uN998U5mZmdq+fbuioqLUv39/FRcX2/qkpqZqxYoVWr58uTZt2qRTp04pKSlJZWVltj4jRoxQbm6usrKylJWVpdzcXKWkpLh9/wAAAAAAgOs18nQAAAAA7jRo0CANGjSoynWGYWju3LmaPn26hg4dKklavHixIiMjtWzZMo0dO1aFhYVasGCBPvjgA/Xr10+StGTJEsXGxmrdunUaMGCAvv/+e2VlZWnLli3q0aOHJOm9995TfHy89u3bp/bt29fNzgIAAAAAAJegeAIAABqsgwcPKi8vT4mJibY2s9msXr16KScnR2PHjtXOnTtVWlrq0CcmJkZxcXHKycnRgAEDtHnzZlksFlvhRJJ69uwpi8WinJycaosnVqtVVqvVtlxUVCRJKi0tVWlp6RXvX8U2zH7GFW/LHVyxjzV9jrp4Lm9FDsiBRA4qkAfX56Ah5xIAAPg2p4snGzdu1Ouvv66dO3fq2LFjWrFihe6++27besMwNHPmTL377rsqKChQjx499NZbb+nGG2+09bFarZoyZYo+/PBDnT17Vn379tW8efPUokULW5+CggJNnDhRK1eulCQlJycrIyNDTZs2rf3eAgAA2MnLy5MkRUZGOrRHRkbq8OHDtj6BgYFq1qxZpT4Vj8/Ly1NERESl7UdERNj6VGX27NmaOXNmpfa1a9cqODjYuZ25hJe6lbtsW660evXqOnuu7OzsOnsub0UOyIFEDiqQB9fl4MyZMy7ZDgAAgLdxunhScd3w3//+97r33nsrra+4bviiRYt03XXX6eWXX1b//v21b98+hYSESLpw3fDPP/9cy5cvV/PmzTV58mQlJSVp586d8vf3l3ThuuFHjhxRVlaWJGnMmDFKSUnR559/fiX7CwAAUInJZHJYNgyjUtvFLu5TVf/LbWfatGmaNGmSbbmoqEixsbFKTExUaGhoTcOvVmlpqbKzs/XCDj9Zyy+9P56wJ22A25+jIgf9+/dXQECA25/PG5EDciCRgwrkwfU5qJg1CQAA4GucLp5w3XAAAOAroqKiJF2YORIdHW1rz8/Pt81GiYqKUklJiQoKChxmn+Tn5yshIcHW5/jx45W2//PPP1ea1WLPbDbLbDZXag8ICHDpl3rWcpOsZd5XPKnLLy5dndP6iByQA4kcVCAPrstBQ88jAADwXX6u3Njlrhsu6bLXDZd02euGAwAAuEKbNm0UFRXlcOmSkpISbdiwwVYY6dq1qwICAhz6HDt2THv27LH1iY+PV2FhobZt22brs3XrVhUWFtr6AAAAAACA+sOlN4z35HXD6+qGq9wMzznkrfbIXe2Qt9rx9ryZ/b3zZteSa3Pnrfmv706dOqUDBw7Ylg8ePKjc3FyFhYWpZcuWSk1N1axZs9SuXTu1a9dOs2bNUnBwsEaMGCFJslgsGjVqlCZPnqzmzZsrLCxMU6ZMUceOHW2zaDt06KCBAwdq9OjReueddyRduORoUlISM2YBAAAAAKiHXFo8qeCJ64bX1Q1XubFg7ZC32iN3tUPeasdb85be3dMRVK8iZ67IHTdcdY8dO3aoT58+tuWKe4yMHDlSixYt0jPPPKOzZ89q3LhxKigoUI8ePbR27Vrbvdokac6cOWrUqJGGDRums2fPqm/fvlq0aJHtXm2StHTpUk2cONE2uzY5OVmZmZl1tJcAAAAAAMCVXFo88eR1w+vqhqsN+caCtUHeao/c1Q55qx1vz1tc2hpPh1CtXdPvcFnuuOGqe/Tu3VuGUf3sJZPJpLS0NKWlpVXbJygoSBkZGcrIyKi2T1hYmJYsWXIloQIAAAAAAC/h0uKJ/XXDu3TpIun/rhv+2muvSXK8bviwYcMk/d91w9PT0yU5Xje8e/cLpxtf7rrhdXXDVW4sWDvkrfbIXe2Qt9rx1rx5442uK1TkyxW588bcAwAAAAAANEROF0+4bjgAAAAAAAAAAPBlThdPuG44AAAAAAAAAADwZU4XT7huOAAAAAAAAAAA8GV+ng4AAAAAAAAAAADAm1A8AQAAAAAAAAAAsEPxBAAAAAAAAAAAwA7FEwAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMBOI08HAAAAAAAAAACoP1pPXeXpEKp16NXBng4BPoKZJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdbhgPAAAAj6iLm0ya/Q2ld5fi0tbIWmaq8eO4ySQAAAAANGzMPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsUDwBAAAAAAAAAACwQ/EEAAAAAAAAAADADsUTAAAAAAAAAAAAOxRPAAAAAAAAAAAA7DTydAAAAAAAAACAt2s9dZWnQ7ikQ68O9nQIAOBTmHkCAAAAAAAAAABgh+IJAAAAAAAAAACAHS7bBQAAAAAAAK/g6Utjmf0NpXeX4tLWyFpm8mgsAADPYuYJAAAAAAAAAACAHWaeOMlbzzzgpmAAAAAAAACAczw926k6FbOgAHiO1888mTdvntq0aaOgoCB17dpV//znPz0dEgAAQLUYuwAAgPqG8QsAAJV59cyTjz76SKmpqZo3b55uueUWvfPOOxo0aJC+++47tWzZ0tPhAQAAOGDsgrrg7NmRdXntdmZDA0D9w/gFAICqefXMkzfffFOjRo3SY489pg4dOmju3LmKjY3V22+/7enQAAAAKmHsAgAA6hvGLwAAVM1riyclJSXauXOnEhMTHdoTExOVk5PjoagAAACqxtgFAADUN4xfAAContdetuuXX35RWVmZIiMjHdojIyOVl5dXqb/VapXVarUtFxYWSpJ+/fVXlZaWXnE8paWlOnPmjBqV+qms3PtuGH/ixAlPh1ClirydOHFCAQEBng6nXiF3tUPeasfb89bo/GlPh1CtEydOuCx3xcXFkiTDMFwRGuqYs2MXifFLXWhUbujMmXKnc+CtYyvJ+d+Jtc1BbXhr3ireCzdN/0TWBvpeMPsZer5Lea1ysHVaXzdFVfe8fcxTF1ydA8Yv9Zs3jl88Pfavy7+bruYtf4er+j3j6de1Pqo4Fr31b5Y3v6YV7wX+7juvqtfVW34vuup3nDNjF68tnlQwmRxfEMMwKrVJ0uzZszVz5sxK7W3atHFbbN4k/I+ejgAAGqZoN/z+LS4ulsVicf2GUSdqOnaRGL/UlRG1eIyvja1qk4Pa8LW8+ZraHge8rqgJxi/1G+MXR3X1d9PV+H3te+rrsehpvBdczxuORVe/rjUZu3ht8SQ8PFz+/v6VznTIz8+vdEaEJE2bNk2TJk2yLZeXl+vXX39V8+bNq/2D74yioiLFxsbqp59+Umho6BVvr6Egb7VH7mqHvNUOeas9V+bOMAwVFxcrJibGRdGhLjk7dpEYv9QFckAOJHIgkYMK5MH1OWD8Ur954/jF0/g9ceXIoWuQxytHDl3D1/LozNjFa4sngYGB6tq1q7Kzs3XPPffY2rOzs3XXXXdV6m82m2U2mx3amjZt6vK4QkNDfeIgqWvkrfbIXe2Qt9ohb7Xnqtxxxmb95ezYRWL8UpfIATmQyIFEDiqQB9fmgPFL/eXN4xdP4/fElSOHrkEerxw5dA1fymNNxy5eWzyRpEmTJiklJUXdunVTfHy83n33Xf344496/PHHPR0aAABAJYxdAABAfcP4BQCAqnl18WT48OE6ceKEXnzxRR07dkxxcXFavXq1WrVq5enQAAAAKmHsAgAA6hvGLwAAVM2riyeSNG7cOI0bN87TYchsNmvGjBmVpqbi0shb7ZG72iFvtUPeao/c4WLeMnaROD4lciCRA4kcSOSgAnkgB6iaN41fPI33yJUjh65BHq8cOXSNhpxHk2EYhqeDAAAAAAAAAAAA8BZ+ng4AAAAAAAAAAADAm1A8AQAAAAAAAAAAsEPxBAAAAAAAAAAAwA7FkxqYN2+e2rRpo6CgIHXt2lX//Oc/PR2SR82ePVs333yzQkJCFBERobvvvlv79u1z6GMYhtLS0hQTE6PGjRurd+/e2rt3r0Mfq9WqCRMmKDw8XE2aNFFycrKOHDlSl7viUbNnz5bJZFJqaqqtjbxV77///a8eeughNW/eXMHBwbrpppu0c+dO23pyV9n58+f1/PPPq02bNmrcuLGuueYavfjiiyovL7f1IW/Sxo0bNWTIEMXExMhkMunTTz91WO+qHBUUFCglJUUWi0UWi0UpKSk6efKkm/cODVlDH79c7r3dENRkzObr3n77bXXq1EmhoaEKDQ1VfHy8/vGPf3g6LI+qagzq69LS0mQymRx+oqKiPB1WnbvceBpAZcnJyWrZsqWCgoIUHR2tlJQUHT161NNh1SuHDh3SqFGjbJ9L27ZtqxkzZqikpMTTodUrr7zyihISEhQcHKymTZt6Opx6o6F/JrpSfKaieHJZH330kVJTUzV9+nTt2rVLt912mwYNGqQff/zR06F5zIYNG/Tkk09qy5Ytys7O1vnz55WYmKjTp0/b+qSnp+vNN99UZmamtm/frqioKPXv31/FxcW2PqmpqVqxYoWWL1+uTZs26dSpU0pKSlJZWZkndqtObd++Xe+++646derk0E7eqlZQUKBbbrlFAQEB+sc//qHvvvtOf/zjHx0GDOSustdee03z589XZmamvv/+e6Wnp+v1119XRkaGrQ95k06fPq3OnTsrMzOzyvWuytGIESOUm5urrKwsZWVlKTc3VykpKW7fPzRMjF8u/95uCGoyZvN1LVq00KuvvqodO3Zox44duuOOO3TXXXdVKoI3FNWNQRuCG2+8UceOHbP97N6929Mh1amajKcBVNanTx/97W9/0759+/Txxx/rf//3f/W73/3O02HVK//+979VXl6ud955R3v37tWcOXM0f/58Pffcc54OrV4pKSnRfffdpyeeeMLTodQbfCa6cnymkmTgkrp37248/vjjDm3XX3+9MXXqVA9F5H3y8/MNScaGDRsMwzCM8vJyIyoqynj11Vdtfc6dO2dYLBZj/vz5hmEYxsmTJ42AgABj+fLltj7//e9/DT8/PyMrK6tud6COFRcXG+3atTOys7ONXr16GU899ZRhGOTtUp599lnj1ltvrXY9uava4MGDjUcffdShbejQocZDDz1kGAZ5q4okY8WKFbZlV+Xou+++MyQZW7ZssfXZvHmzIcn497//7ea9QkPE+MXRxe/thuriMVtD1axZM+Mvf/mLp8Ooc9WNQRuCGTNmGJ07d/Z0GB51ufE0gJr57LPPDJPJZJSUlHg6lHotPT3daNOmjafDqJcWLlxoWCwWT4dRL/CZyLUa6mcqZp5cQklJiXbu3KnExESH9sTEROXk5HgoKu9TWFgoSQoLC5MkHTx4UHl5eQ55M5vN6tWrly1vO3fuVGlpqUOfmJgYxcXF+Xxun3zySQ0ePFj9+vVzaCdv1Vu5cqW6deum++67TxEREerSpYvee+8923pyV7Vbb71VX375pf7zn/9Ikv71r39p06ZNuvPOOyWRt5pwVY42b94si8WiHj162Pr07NlTFoulQeQRdYvxC6pz8ZitoSkrK9Py5ct1+vRpxcfHezqcOlfdGLSh2L9/v2JiYtSmTRvdf//9+uGHHzwdUp263HgawOX9+uuvWrp0qRISEhQQEODpcOq1wsLCBjseQd3gMxFcheLJJfzyyy8qKytTZGSkQ3tkZKTy8vI8FJV3MQxDkyZN0q233qq4uDhJsuXmUnnLy8tTYGCgmjVrVm0fX7R8+XJ98803mj17dqV15K16P/zwg95++221a9dOa9as0eOPP66JEyfq/fffl0TuqvPss8/qgQce0PXXX6+AgAB16dJFqampeuCBBySRt5pwVY7y8vIUERFRafsRERENIo+oW4xfUJWqxmwNxe7du3XVVVfJbDbr8ccf14oVK3TDDTd4Oqw6dakxaEPQo0cPvf/++1qzZo3ee+895eXlKSEhQSdOnPB0aHXmcuNpANV79tln1aRJEzVv3lw//vijPvvsM0+HVK/97//+rzIyMvT44497OhT4MD4TwVUontSAyWRyWDYMo1JbQzV+/Hh9++23+vDDDyutq03efDm3P/30k5566iktWbJEQUFB1fYjb5WVl5frt7/9rWbNmqUuXbpo7NixGj16tN5++22HfuTO0UcffaQlS5Zo2bJl+uabb7R48WK98cYbWrx4sUM/8nZ5rshRVf0bWh5Rtxi/wN6lxmy+rn379srNzdWWLVv0xBNPaOTIkfruu+88HVadqekY1JcNGjRI9957rzp27Kh+/fpp1apVklRpTOTLajqeBhqCtLQ0mUymS/7s2LHD1v/pp5/Wrl27tHbtWvn7++vhhx+WYRge3APv4GweJeno0aMaOHCg7rvvPj322GMeitx71CaHcA6fiXClGnk6AG8WHh4uf3//ShXJ/Pz8SpXLhmjChAlauXKlNm7cqBYtWtjao6KiJF040zo6OtrWbp+3qKgolZSUqKCgwOFs7fz8fCUkJNTRHtStnTt3Kj8/X127drW1lZWVaePGjcrMzNS+ffskkbeqREdHVzpDtEOHDvr4448lccxV5+mnn9bUqVN1//33S5I6duyow4cPa/bs2Ro5ciR5qwFX5SgqKkrHjx+vtP2ff/6ZvydwOcYvuFh1Y7aGIjAwUNdee60kqVu3btq+fbv+9Kc/6Z133vFwZHXjcmNQq9Uqf39/D0ZY95o0aaKOHTtq//79ng6lzlxuPA00JOPHj7d9RqpO69atbf8PDw9XeHi4rrvuOnXo0EGxsbHasmVLg7wEpD1n83j06FH16dNH8fHxevfdd90cXf3gbA5Rc3wmgqsw8+QSAgMD1bVrV2VnZzu0Z2dnN4gvDatjGIbGjx+vTz75RF999ZXatGnjsL5NmzaKiopyyFtJSYk2bNhgy1vXrl0VEBDg0OfYsWPas2ePz+a2b9++2r17t3Jzc20/3bp104MPPqjc3Fxdc8015K0at9xyi624VOE///mPWrVqJYljrjpnzpyRn5/jr3l/f3+Vl5dLIm814aocxcfHq7CwUNu2bbP12bp1qwoLCxtEHlG3GL+gwuXGbA2VYRiyWq2eDqPOXG4M2tAKJ5JktVr1/fffO5wY4esuN54GGpLw8HBdf/31l/ypbqZexYyThvR3pDrO5PG///2vevfurd/+9rdauHBhpc+pDdWVHIu4ND4TwWXq9Pb09dDy5cuNgIAAY8GCBcZ3331npKamGk2aNDEOHTrk6dA85oknnjAsFovx9ddfG8eOHbP9nDlzxtbn1VdfNSwWi/HJJ58Yu3fvNh544AEjOjraKCoqsvV5/PHHjRYtWhjr1q0zvvnmG+OOO+4wOnfubJw/f94Tu+URvXr1Mp566inbMnmr2rZt24xGjRoZr7zyirF//35j6dKlRnBwsLFkyRJbH3JX2ciRI42rr77a+OKLL4yDBw8an3zyiREeHm4888wztj7kzTCKi4uNXbt2Gbt27TIkGW+++aaxa9cu4/Dhw4ZhuC5HAwcONDp16mRs3rzZ2Lx5s9GxY0cjKSmpzvcXDQPjl8u/txuCmozZfN20adOMjRs3GgcPHjS+/fZb47nnnjP8/PyMtWvXejo0j7p4DOrrJk+ebHz99dfGDz/8YGzZssVISkoyQkJCGtTvxJqMpwE42rp1q5GRkWHs2rXLOHTokPHVV18Zt956q9G2bVvj3Llzng6v3vjvf/9rXHvttcYdd9xhHDlyxGFMgpo7fPiwsWvXLmPmzJnGVVddZRvnFhcXezo0r8VnoivHZyrDoHhSA2+99ZbRqlUrIzAw0Pjtb39rbNiwwdMheZSkKn8WLlxo61NeXm7MmDHDiIqKMsxms3H77bcbu3fvdtjO2bNnjfHjxxthYWFG48aNjaSkJOPHH3+s473xrIs/uJK36n3++edGXFycYTabjeuvv9549913HdaTu8qKioqMp556ymjZsqURFBRkXHPNNcb06dMNq9Vq60PeDGP9+vVV/k4bOXKkYRiuy9GJEyeMBx980AgJCTFCQkKMBx980CgoKKijvURD1NDHL5d7bzcENRmz+bpHH33U9j74zW9+Y/Tt27fBF04Mo+EVT4YPH25ER0cbAQEBRkxMjDF06FBj7969ng6rzl1uPA3A0bfffmv06dPHCAsLM8xms9G6dWvj8ccfN44cOeLp0OqVhQsXVjsmQc2NHDmyyhyuX7/e06F5tYb+mehK8ZnKMEyGwV2uAAAAAAAAAAAAKnCRQQAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsUDwB4BKHDh2SyWTSokWL6vR5e/furd69e1+2n6fiAwAAvuvXX3/V/fffr4iICJlMJt19991V9jOZTEpLS7vs9hYtWiSTyaRDhw65NE4AAOA5F39vUfH9xBtvvFEnz5+bm6vBgwerZcuWaty4scLCwhQfH68lS5bUyfMD9VkjTwcAwDdER0dr8+bNatu2bZ0+77x58+r0+QAAACq89NJLWrFihf7617+qbdu2CgsLq7Lf5s2b1aJFizqODgAAeANPf29x8uRJxcbG6oEHHtDVV1+t06dPa+nSpUpJSdGhQ4f0/PPPezQ+wJtRPAFwRcrKynT+/HmZzWb17Nmzzp//hhtuqPPnBAAAkKQ9e/aobdu2evDBBy/ZzxNjJAAA4FlnzpxRcHCwx763OHv2rIKCgqq8YkdSUpIOHjyod999l+IJcAlctgtwo3//+9964IEHFBkZKbPZrJYtW+rhhx+W1WqVdOED91133aVmzZopKChIN910kxYvXuywja+//lomk0kffvihpk+frpiYGIWGhqpfv37at2+fQ99du3YpKSlJERERMpvNiomJ0eDBg3XkyJFLxtm7d2/FxcXpn//8p3r27KnGjRvr6quv1gsvvKCysjJbv4qppenp6Xr55ZfVpk0bmc1mrV+/vtrLYl0uB5KUl5ensWPHqkWLFgoMDFSbNm00c+ZMnT9//rI5rmoQcPToUQ0bNkwhISGyWCwaPny48vLyHPr88ssvio2NVUJCgkpLS23t3333nZo0aaKUlJTLPjcAAL6uvoxlJCkrK0t9+/aVxWJRcHCwOnTooNmzZzv0WblypeLj4xUcHKyQkBD1799fmzdvduiTlpYmk8mkvXv36oEHHpDFYlFkZKQeffRRFRYWSvq/MdG6dev0/fffy2QyyWQy6euvv64ytqou27VlyxbdcsstCgoKUkxMjKZNm+YwJpGkTZs2KSAgQFOmTHFor7i814IFCy6bFwAAULX9+/drxIgRtnFHhw4d9NZbb9nWV3c5zYqxjf3f/YrvVTZu3KiEhAQFBwfr0Ucfta2r6nLj5eXleuWVV9SyZUsFBQWpW7du+vLLLyv127Rpk/r27auQkBAFBwcrISFBq1atcuhTEevatWv16KOP6je/+Y2Cg4Mdvnu5WHh4uBo1cjyvvnXr1kpKStIXX3yhLl26qHHjxurQoYO++OIL2/N06NBBTZo0Uffu3bVjx45qtw/4AmaeAG7yr3/9S7feeqvCw8P14osvql27djp27JhWrlypkpISHTp0SAkJCYqIiNCf//xnNW/eXEuWLNEjjzyi48eP65lnnnHY3nPPPadbbrlFf/nLX1RUVKRnn31WQ4YM0ffffy9/f3+dPn1a/fv3V5s2bfTWW28pMjJSeXl5Wr9+vYqLiy8bb15enu6//35NnTpVL774olatWqWXX35ZBQUFyszMdOj75z//Wdddd53eeOMNhYaGql27drXKgdlsVl5enrp37y4/Pz/94Q9/UNu2bbV582a9/PLLOnTokBYuXOhU3s+ePat+/frp6NGjmj17tq677jqtWrVKw4cPd+gXHh6u5cuXq3fv3nr22Wf15ptv6syZM7rvvvvUsmVLzZ8/36nnBQDA19SnscyCBQs0evRo9erVS/Pnz1dERIT+85//aM+ePbY+y5Yt04MPPqjExER9+OGHslqtSk9PV+/evfXll1/q1ltvddjmvffeq+HDh2vUqFHavXu3pk2bJkn661//artc6bhx41RYWKilS5dKqvmM2O+++059+/ZV69attWjRIgUHB2vevHlatmyZQ79bb71VL7/8sqZOnarbb79dycnJ2rt3r5588kk99NBDGjVqVI2eDwAAOPruu++UkJCgli1b6o9//KOioqK0Zs0aTZw4Ub/88otmzJjh9DaPHTumhx56SM8884xmzZolP79Ln7OemZmpVq1aae7cuSovL1d6eroGDRqkDRs2KD4+XpK0YcMG9e/fX506ddKCBQtkNps1b948DRkyRB9++GGl7zoeffRRDR48WB988IFOnz6tgIAA27ry8nKVl5eroKBAf//737VmzZpK3/dIF8aA06ZN0/Tp02WxWDRz5kwNHTpU06ZN05dffqlZs2bJZDLp2Weftc1gady4sdP5AuoFA4Bb3HHHHUbTpk2N/Pz8Ktfff//9htlsNn788UeH9kGDBhnBwcHGyZMnDcMwjPXr1xuSjDvvvNOh39/+9jdDkrF582bDMAxjx44dhiTj008/dTrWXr16GZKMzz77zKF99OjRhp+fn3H48GHDMAzj4MGDhiSjbdu2RklJiUPfinULFy6scQ4MwzDGjh1rXHXVVbbnqPDGG28Ykoy9e/deNvZevXrZlt9+++1q9+Xi+AzDMF577TVDkrFixQpj5MiRRuPGjY1vv/32ks8JAEBDUF/GMsXFxUZoaKhx6623GuXl5VX2KSsrM2JiYoyOHTsaZWVlDo+NiIgwEhISbG0zZswwJBnp6ekO2xg3bpwRFBTk8By9evUybrzxxsvGKMmYMWOGbXn48OFG48aNjby8PFvb+fPnjeuvv96QZBw8eNDWXl5ebtx5551G06ZNjT179hg33HCDcf311xunTp267PMCAICqDRgwwGjRooVRWFjo0D5+/HgjKCjI+PXXX42FCxdW+rtsGP83tlm/fr2treJ7lS+//LLSc138vUXF9ycxMTHG2bNnbe1FRUVGWFiY0a9fP1tbz549jYiICKO4uNjWdv78eSMuLs5o0aKFbVxSEevDDz9c7T6PHTvWkGRIMgIDA4158+ZV6tOqVSujcePGxpEjR2xtubm5hiQjOjraOH36tK39008/NSQZK1eurPY5gfqOy3YBbnDmzBlt2LBBw4YN029+85sq+3z11Vfq27evYmNjHdofeeQRnTlzptIlJJKTkx2WO3XqJEk6fPiwJOnaa69Vs2bN9Oyzz2r+/Pn67rvvnIo5JCSk0nOMGDFC5eXl2rhxY6VY7M9eqEpNciBJX3zxhfr06aOYmBidP3/e9jNo0CBJF86ycMb69eur3ZeqPP300xo8eLAeeOABLV68WBkZGerYsaNTzwkAgK+pT2OZnJwcFRUVady4cTKZTFX22bdvn44ePaqUlBSHs0Cvuuoq3XvvvdqyZYvOnDlz2XjPnTun/Pz8GsV1KevXr1ffvn0VGRlpa/P396909qh04ZJf77//vkJCQtStWzcdPHhQf/vb39SkSZMrjgMAgIbo3Llz+vLLL3XPPfcoODjY4buIO++8U+fOndOWLVuc3m6zZs10xx131Lj/0KFDFRQUZFsOCQnRkCFDtHHjRpWVlen06dPaunWrfve73+mqq66y9fP391dKSoqOHDlS6RKo9957b7XP99xzz2n79u1atWqVHn30UY0fP15vvPFGpX433XSTrr76attyhw4dJF24/FhwcHCl9oqxHOCLKJ4AblBQUKCysjK1aNGi2j4nTpxQdHR0pfaYmBjbenvNmzd3WDabzZIuXKZKkiwWizZs2KCbbrpJzz33nG688UbFxMRoxowZla6fXRX7D+8VoqKiqoylqrgvVpMcSNLx48f1+eefKyAgwOHnxhtvlHTh3iTOOHHixCX35WImk0mPPPKIzp07p6ioKO51AgCA6tdY5ueff5aky8YqVT2GiYmJsV3Cwpl4r8SJEyeqHJtUN15p3ry5kpOTde7cOQ0cOJATPQAAuAInTpzQ+fPnlZGRUem7iDvvvFOS899FSDX7rsRedWOBkpISnTp1SgUFBTIMw6nx1qViaNmypbp166Y777xTb7/9tsaMGaNp06bZxlIVwsLCHJYDAwMv2X7u3LlqnxOo77jnCeAGYWFh8vf3v+TNTZs3b65jx45Vaj969KikC/fkcFbHjh21fPlyGYahb7/9VosWLdKLL76oxo0ba+rUqZd87PHjxyu1Vdxk/eIvD6o7q9NeTXIgXdjPTp066ZVXXqlyfcWAoKaaN2+ubdu2VWq/+IbxFY4dO6Ynn3xSN910k/bu3aspU6boz3/+s1PPCQCAr6lPY5mKmTGXi1VStfH6+fmpWbNmTsdbW82bN69ybFLdeCU7O1tvv/22unfvrhUrVujjjz++5JmlAACges2aNbPN3njyySer7NOmTRtlZ2dLUqWbrldXWKnJdyX2qhsLBAYG6qqrrlKjRo3k5+fn1HjLmRi6d++u+fPn64cffrjkFUOAhoyZJ4AbNG7cWL169dLf//73av+o9u3bV1999ZXtD16F999/X8HBwerZs2etn99kMqlz586aM2eOmjZtqm+++eayjykuLtbKlSsd2pYtWyY/Pz/dfvvtTsdQkxxIUlJSkvbs2aO2bduqW7dulX6cLZ706dOn2n25WFlZmR544AGZTCb94x//0OzZs5WRkaFPPvnEqecEAMDX1KexTEJCgiwWi+bPny/DMKrs0759e1199dVatmyZQ5/Tp0/r448/Vnx8vMNlKNytT58++vLLLx1OXikrK9NHH31UqW/FzWd79eqlnJwcJScna9SoUTp48GCdxQsAgC8JDg5Wnz59tGvXLnXq1KnK7yKaN2+u1q1bS5K+/fZbh8df/H1DbX3yyScOszaKi4v1+eef67bbbpO/v7+aNGmiHj166JNPPnGY+VpeXq4lS5aoRYsWuu6662r9/OvXr5efn5+uueaaK9oPwJcx8wRwkzfffFO33nqrevTooalTp+raa6/V8ePHtXLlSr3zzjuaMWOG7X4ff/jDHxQWFqalS5dq1apVSk9Pl8Vicer5vvjiC82bN0933323rrnmGhmGoU8++UQnT55U//79bf369u2rDRs26Pz58w6Pb968uZ544gn9+OOPuu6667R69Wq99957euKJJ9SyZUu35CAkJEQvvviisrOzlZCQoIkTJ6p9+/Y6d+6cDh06pNWrV2v+/Pm2y3Bce+21kqQDBw5U+5wPP/yw5syZo4cfflivvPKK2rVrp9WrV2vNmjWV+s6YMUP//Oc/tXbtWkVFRWny5MnasGGDRo0apS5duqhNmza12m8AAHxBfRnLXHXVVfrjH/+oxx57TP369dPo0aMVGRmpAwcO6F//+pcyMzPl5+en9PR0Pfjgg0pKStLYsWNltVr1+uuv6+TJk3r11VddkrPDhw+rbdu2GjlypBYsWFBtv+eff14rV67UHXfcoT/84Q8KDg7WW2+9pdOnTzv0sz/RY9myZfL399eiRYt00003afjw4dq0aZPtkhkAAKDm/vSnP+nWW2/VbbfdpieeeEKtW7dWcXGxDhw4oM8//1xfffWVbr75ZrVv315TpkzR+fPn1axZM61YsUKbNm1ySQz+/v7q37+/Jk2apPLycr322msqKirSzJkzbX1mz56t/v37q0+fPpoyZYoCAwM1b9487dmzRx9++GGNZpqMGTNGoaGh6t69uyIjI/XLL7/o73//uz766CM9/fTTzDoBLoHiCeAmnTt31rZt2zRjxgxNmzZNxcXFioqK0h133KHAwEC1b99eOTk5eu655/Tkk0/q7Nmz6tChgxYuXKhHHnnE6edr166dmjZtqvT0dB09etT2HIsWLdLIkSNt/crKylRWVlbp8VFRUXrrrbc0ZcoU7d69W2FhYXruuecc/mi7OgfShetx7tixQy+99JJef/11HTlyRCEhIWrTpo0GDhzocAmNiws+VQkODtZXX32lp556SlOnTpXJZFJiYqKWL1+uhIQEW7/s7GzNnj1bL7zwgvr27WtrX7Rokbp06cIXEgCABq8+jWVGjRqlmJgYvfbaa3rsscdkGIZat27t8LgRI0aoSZMmmj17toYPHy5/f3/17NlT69evdxgjXAnDMKoda9mLi4vTunXrNHnyZI0cOVLNmjVTSkqK7r33Xo0ZM8bWr+JEj+zsbNt10Zs1a6bly5fr9ttv1zPPPKO5c+e6JHYAABqSG264Qd98841eeuklPf/888rPz1fTpk3Vrl07231P/P399fnnn2v8+PF6/PHHZTabdf/99yszM1ODBw++4hjGjx+vc+fOaeLEicrPz9eNN96oVatW6ZZbbrH16dWrl7766ivNmDFDjzzyiMrLy9W5c2etXLlSSUlJNXqe+Ph4LVy4UIsXL9bJkyd11VVXqXPnzvrggw/00EMPXfF+AL7MZFQ3tx1Ag9G7d2/98ssv2rNnj6dDAQAAAAAAAACP454nAAAAAAAAAAAAdiieAAAAAAAAAAAA2OGyXQAAAAAAAAAAAHaYeQIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2Gnk6AHcpLy/X0aNHFRISIpPJ5OlwAAC4LMMwVFxcrJiYGPn5cX5DQ8T4BQBQ3zB+AeMXAEB94szYxeniycaNG/X6669r586dOnbsmFasWKG7777btv6RRx7R4sWLHR7To0cPbdmyxbZstVo1ZcoUffjhhzp79qz69u2refPmqUWLFrY+BQUFmjhxolauXClJSk5OVkZGhpo2bVqjOI8eParY2Fhndw8AAI/76aefHP4mouFg/AIAqK8YvzRcjF8AAPVRTcYuThdPTp8+rc6dO+v3v/+97r333ir7DBw4UAsXLrQtBwYGOqxPTU3V559/ruXLl6t58+aaPHmykpKStHPnTvn7+0uSRowYoSNHjigrK0uSNGbMGKWkpOjzzz+vUZwhISGSLiQhNDTU2d30CaWlpVq7dq0SExMVEBDg6XDqBXLmHPLlHPLlnIaYr6KiIsXGxtr+hsE16suJH5J3jF8a4nvPHcjjlSOHrkEeXYM8Vo/xC7xh/OJKvN/di/y6Hzl2P3Lsfu7MsTNjF6eLJ4MGDdKgQYMu2cdsNisqKqrKdYWFhVqwYIE++OAD9evXT5K0ZMkSxcbGat26dRowYIC+//57ZWVlacuWLerRo4ck6b333lN8fLz27dun9u3bXzbOiqmioaGhPvHHuzZKS0sVHBys0NBQ3sg1RM6cQ76cQ76c05DzxeUOXKu+nPghecf4pSG/91yJPF45cuga5NE1yOPlMX5puLxh/OJKvN/di/y6Hzl2P3LsfnWR45qMXdxyz5Ovv/5aERERatq0qXr16qVXXnlFERERkqSdO3eqtLRUiYmJtv4xMTGKi4tTTk6OBgwYoM2bN8tisdgKJ5LUs2dPWSwW5eTkVFk8sVqtslqttuWioiJJFxJdWlrqjt30ehX73VD3vzbImXPIl3PIl3MaYr4a0r7Wpfpy4gcAAAAAAPAeLi+eDBo0SPfdd59atWqlgwcP6oUXXtAdd9yhnTt3ymw2Ky8vT4GBgWrWrJnD4yIjI5WXlydJysvLsxVb7EVERNj6XGz27NmaOXNmpfa1a9cqODjYBXtWf2VnZ3s6hHqHnDmHfDmHfDmnIeXrzJkzng6hwfLEiR8AAAAAAMB7ubx4Mnz4cNv/4+Li1K1bN7Vq1UqrVq3S0KFDq32cYRgOU2WqmjZzcR9706ZN06RJk2zLFdcuS0xM9Ilpo7VRWlqq7Oxs9e/fnylkNUTOnEO+nEO+nNMQ81UxaxJ1y1MnfkjeOXO2Ic76cgfyeOXIoWuQR9cgj9UjJwAAwFe55bJd9qKjo9WqVSvt379fkhQVFaWSkhIVFBQ4fAmRn5+vhIQEW5/jx49X2tbPP/+syMjIKp/HbDbLbDZXag8ICGgwX7pVhxw4j5w5h3w5h3w5pyHlq6Hsp7fx1IkfknfPnG1Is77ciTxeOXLoGuTRNchjZcycBQAAvsrtxZMTJ07op59+UnR0tCSpa9euCggIUHZ2toYNGyZJOnbsmPbs2aP09HRJUnx8vAoLC7Vt2zZ1795dkrR161YVFhbaCiwAUJ3WU1d5OoQqmf0NpXf3dBQALqeuTvyQvHPmbEOc9eUO7sxjXNoal27PlfakDXDZtjgWXYM8ugZ5rB4zZwEA8B3e8p1axXdocWlrZC27cELioVcH13kcThdPTp06pQMHDtiWDx48qNzcXIWFhSksLExpaWm69957FR0drUOHDum5555TeHi47rnnHkmSxWLRqFGjNHnyZDVv3lxhYWGaMmWKOnbsaLsJa4cOHTRw4ECNHj1a77zzjiRpzJgxSkpK4prhAADAreryxA9vnjnrDTH4AnfkseLDgzdyxzHDsega5NE1yGNl5AMAAPgqp4snO3bsUJ8+fWzLFWdLjhw5Um+//bZ2796t999/XydPnlR0dLT69Omjjz76SCEhIbbHzJkzR40aNdKwYcN09uxZ9e3bV4sWLZK/v7+tz9KlSzVx4kTbzVmTk5OVmZlZ6x0FAAANEyd+AAAAAAAAZzldPOndu7cMw6h2/Zo1l7+MQFBQkDIyMpSRkVFtn7CwMC1ZssTZ8AAAABxw4gcAAAAAAHCW2+95AgAA4Emc+AEAAAAAAJzl5+kAAAAAAAAAAAAAvAnFEwAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsUDwBAAAAAAAAAACwQ/EEAAAAAAAAAADADsUTAAAAAAAAAAAAOxRPAAAAAAAAAAAA7FA8AQAAAAAAAAAAsNPI0wEAAAAAQEPWeuoqt23b7G8ovbsUl7ZG1jJTrbZx6NXBLo4KAAAA8H7MPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAvMXv2bN18880KCQlRRESE7r77bu3bt8+hj2EYSktLU0xMjBo3bqzevXtr7969Dn2sVqsmTJig8PBwNWnSRMnJyTpy5IhDn4KCAqWkpMhischisSglJUUnT5509y4CAFAvUDwBAAAAAADwEhs2bNCTTz6pLVu2KDs7W+fPn1diYqJOnz5t65Oenq4333xTmZmZ2r59u6KiotS/f38VFxfb+qSmpmrFihVavny5Nm3apFOnTikpKUllZWW2PiNGjFBubq6ysrKUlZWl3NxcpaSk1On+AgDgrbhhPAAAAAAAgJfIyspyWF64cKEiIiK0c+dO3X777TIMQ3PnztX06dM1dOhQSdLixYsVGRmpZcuWaezYsSosLNSCBQv0wQcfqF+/fpKkJUuWKDY2VuvWrdOAAQP0/fffKysrS1u2bFGPHj0kSe+9957i4+O1b98+tW/fvm53HAAAL8PMEwAAAAAAAC9VWFgoSQoLC5MkHTx4UHl5eUpMTLT1MZvN6tWrl3JyciRJO3fuVGlpqUOfmJgYxcXF2fps3rxZFovFVjiRpJ49e8pisdj6AADQkDHzBAAAAAAAwAsZhqFJkybp1ltvVVxcnCQpLy9PkhQZGenQNzIyUocPH7b1CQwMVLNmzSr1qXh8Xl6eIiIiKj1nRESErU9VrFarrFarbbmoqEiSVFpaqtLSUmd30etU7IMv7Is3Ir/uR47dz5dzbPY3PB2CJMnsZzj8K7ku385sh+IJAAAAAACAFxo/fry+/fZbbdq0qdI6k8nksGwYRqW2i13cp6r+l9vO7NmzNXPmzErta9euVXBw8CWfvz7Jzs72dAg+jfy6Hzl2P1/McXp3T0fg6KVu5bb/r1692iXbPHPmTI37UjwBAAAAAADwMhMmTNDKlSu1ceNGtWjRwtYeFRUl6cLMkejoaFt7fn6+bTZKVFSUSkpKVFBQ4DD7JD8/XwkJCbY+x48fr/S8P//8c6VZLfamTZumSZMm2ZaLiooUGxurxMREhYaG1nJvvUdpaamys7PVv39/BQQEeDocn0N+3Y8cu58v5zgubY2nQ5B0YcbJS93K9cIOP1nLLxT096QNcMm2K2ZM1gTFEwAAAAAAAC9hGIYmTJigFStW6Ouvv1abNm0c1rdp00ZRUVHKzs5Wly5dJEklJSXasGGDXnvtNUlS165dFRAQoOzsbA0bNkySdOzYMe3Zs0fp6emSpPj4eBUWFmrbtm3q3v3CqcZbt25VYWGhrcBSFbPZLLPZXKk9ICDAp75E9LX98Tbk1/3Isfv5Yo6tZZeewVjXrOUmW0yuyrUz26F4AgAAAAAA4CWefPJJLVu2TJ999plCQkJs9x+xWCxq3LixTCaTUlNTNWvWLLVr107t2rXTrFmzFBwcrBEjRtj6jho1SpMnT1bz5s0VFhamKVOmqGPHjurXr58kqUOHDho4cKBGjx6td955R5I0ZswYJSUlqX379p7ZeQAAvAjFEwAAAAAAAC/x9ttvS5J69+7t0L5w4UI98sgjkqRnnnlGZ8+e1bhx41RQUKAePXpo7dq1CgkJsfWfM2eOGjVqpGHDhuns2bPq27evFi1aJH9/f1ufpUuXauLEiUpMTJQkJScnKzMz0707CABAPUHxBAAAAAAAwEsYhnHZPiaTSWlpaUpLS6u2T1BQkDIyMpSRkVFtn7CwMC1ZsqQ2YQIA4PP8PB0AAAAAAAAAAACAN6F4AgAAAAAAAAAAYIfiCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAAAAAABgh+IJAAAAAAAAAACAHYonAAAAAAAAAAAAdiieAAAAAAAAAAAA2HG6eLJx40YNGTJEMTExMplM+vTTTx3WG4ahtLQ0xcTEqHHjxurdu7f27t3r0MdqtWrChAkKDw9XkyZNlJycrCNHjjj0KSgoUEpKiiwWiywWi1JSUnTy5EmndxAAAAAAAAAAAMAZThdPTp8+rc6dOyszM7PK9enp6XrzzTeVmZmp7du3KyoqSv3791dxcbGtT2pqqlasWKHly5dr06ZNOnXqlJKSklRWVmbrM2LECOXm5iorK0tZWVnKzc1VSkpKLXYRAAA0ZJz4AQAAAAAAnOV08WTQoEF6+eWXNXTo0ErrDMPQ3LlzNX36dA0dOlRxcXFavHixzpw5o2XLlkmSCgsLtWDBAv3xj39Uv3791KVLFy1ZskS7d+/WunXrJEnff/+9srKy9Je//EXx8fGKj4/Xe++9py+++EL79u27wl0GAAANCSd+AAAAAAAAZzVy5cYOHjyovLw8JSYm2trMZrN69eqlnJwcjR07Vjt37lRpaalDn5iYGMXFxSknJ0cDBgzQ5s2bZbFY1KNHD1ufnj17ymKxKCcnR+3bt6/03FarVVar1bZcVFQkSSotLVVpaakrd7PeqNjvhrr/tUHOnOOt+TL7G54OoUpmvwtxeVu+vJW3Hl/u1JD2tS4NGjRIgwYNqnLdxSd+SNLixYsVGRmpZcuWaezYsbYTPz744AP169dPkrRkyRLFxsZq3bp1GjBggO3Ejy1bttjGL++9957i4+O1b9++KscuAAAAAADAe7m0eJKXlydJioyMdGiPjIzU4cOHbX0CAwPVrFmzSn0qHp+Xl6eIiIhK24+IiLD1udjs2bM1c+bMSu1r165VcHCw8zvjQ7Kzsz0dQr1DzpzjbflK7+7pCC7N2/Ll7RpSvs6cOePpEBocT574IXnnyR8NsXDpDu7Mo7eeJCC5dn8b0rHozte04uSNin9royG8BpfTkI5HZ5ETAADgq1xaPKlgMpkclg3DqNR2sYv7VNX/UtuZNm2aJk2aZFsuKipSbGysEhMTFRoa6kz4PqO0tFTZ2dnq37+/AgICPB1OvUDOnOOt+YpLW+PpEKpk9jP0Urdyr8uXt/LW48udKr44R93x5Ikfknef/NGQCpfu5I48evNJAqtXr3b5NhvCsVgXr+lL3cpr/Vh3vK71VUM4Hp3FyR8AAMBXubR4EhUVJenCFwjR0dG29vz8fNuXElFRUSopKVFBQYHDlxD5+flKSEiw9Tl+/Hil7f/888+VvtyoYDabZTabK7UHBAQ0mC/dqkMOnEfOnONt+bKWXbpY62neli9v15Dy1VD20xt54sQPyTtP/miIhUt3cGcevfUkAUnakzbAZdtqSMeiO1/TipM3XtjhJ2t57cZIrnxd66uGdDw6i5M/AACAr3Jp8aRNmzaKiopSdna2unTpIkkqKSnRhg0b9Nprr0mSunbtqoCAAGVnZ2vYsGGSpGPHjmnPnj1KT0+XJMXHx6uwsFDbtm1T9+4XTsPaunWrCgsLbQUWAACAK+XJEz8k7z75wxti8AXuyKM3nyTgjmOmIRyLdfGaWstNtX4eX8+/MxrC8egs8gEAAHyVn7MPOHXqlHJzc5WbmyvpwrXCc3Nz9eOPP8pkMik1NVWzZs3SihUrtGfPHj3yyCMKDg7WiBEjJEkWi0WjRo3S5MmT9eWXX2rXrl166KGH1LFjR9tNWDt06KCBAwdq9OjR2rJli7Zs2aLRo0crKSmJG64CAACXsT/xo0LFiR8VhRH7Ez8qVJz4UdHH/sSPCpz4AQAAAABA/eX0zJMdO3aoT58+tuWKS02MHDlSixYt0jPPPKOzZ89q3LhxKigoUI8ePbR27VqFhITYHjNnzhw1atRIw4YN09mzZ9W3b18tWrRI/v7+tj5Lly7VxIkTbTdnTU5OVmZmZq13FAAANEynTp3SgQMHbMsVJ36EhYWpZcuWthM/2rVrp3bt2mnWrFnVnvjRvHlzhYWFacqUKdWe+PHOO+9IksaMGcOJHwAAAAAA1FNOF0969+4twzCqXW8ymZSWlqa0tLRq+wQFBSkjI0MZGRnV9gkLC9OSJUucDQ8AAMABJ34AAAAAAABnufSeJwAAAN6GEz8AAAAAAICznL7nCQAAAAAAAAAAgC+jeAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAAAAAABgh+IJAAAAAAAAAACAHYonAAAAAAAAAAAAdiieAAAAAAAAAAAA2KF4AgAAAAAAAAAAYIfiCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCnkacDAAAAQMPUeuoqT4dQrUOvDvZ0CAAAAAAAD2LmCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAAAAAABgp5GnA4Dvaz11ladDqNahVwd7OgQAAAAAAAAAgJdh5gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAADgRTZu3KghQ4YoJiZGJpNJn376qcN6wzCUlpammJgYNW7cWL1799bevXsd+litVk2YMEHh4eFq0qSJkpOTdeTIEYc+BQUFSklJkcVikcViUUpKik6ePOnmvQMAoH6geAIAAAAAAOBFTp8+rc6dOyszM7PK9enp6XrzzTeVmZmp7du3KyoqSv3791dxcbGtT2pqqlasWKHly5dr06ZNOnXqlJKSklRWVmbrM2LECOXm5iorK0tZWVnKzc1VSkqK2/cPAID6oJGnAwAAAAAAAMD/GTRokAYNGlTlOsMwNHfuXE2fPl1Dhw6VJC1evFiRkZFatmyZxo4dq8LCQi1YsEAffPCB+vXrJ0lasmSJYmNjtW7dOg0YMEDff/+9srKytGXLFvXo0UOS9N577yk+Pl779u1T+/bt62ZnAQDwUhRPAAAAAAAA6omDBw8qLy9PiYmJtjaz2axevXopJydHY8eO1c6dO1VaWurQJyYmRnFxccrJydGAAQO0efNmWSwWW+FEknr27CmLxaKcnJxqiydWq1VWq9W2XFRUJEkqLS1VaWmpq3e3zlXsgy/sizciv+5Hjt3Pl3Ns9jc8HYIkyexnOPwruS7fzmyH4gkAAAAAAEA9kZeXJ0mKjIx0aI+MjNThw4dtfQIDA9WsWbNKfSoen5eXp4iIiErbj4iIsPWpyuzZszVz5sxK7WvXrlVwcLBzO+PFsrOzPR2CTyO/7keO3c8Xc5ze3dMROHqpW7nt/6tXr3bJNs+cOVPjvhRPAAAAAAAA6hmTyeSwbBhGpbaLXdynqv6X2860adM0adIk23JRUZFiY2OVmJio0NDQmobvtUpLS5Wdna3+/fsrICDA0+H4HPLrfuTY/Xw5x3FpazwdgqQLM05e6lauF3b4yVp+4W/SnrQBLtl2xYzJmqB4AgAAAAAAUE9ERUVJujBzJDo62taen59vm40SFRWlkpISFRQUOMw+yc/PV0JCgq3P8ePHK23/559/rjSrxZ7ZbJbZbK7UHhAQ4FNfIvra/ngb8ut+5Nj9fDHH1rJLF+HrmrXcZIvJVbl2ZjsUT9CgtZ66ymHZ7G8ovfuFKqunf1kcenWwR58fAAAAAOB92rRpo6ioKGVnZ6tLly6SpJKSEm3YsEGvvfaaJKlr164KCAhQdna2hg0bJkk6duyY9uzZo/T0dElSfHy8CgsLtW3bNnXvfuE6LVu3blVhYaGtwAIAQENG8QQAAAAAAMCLnDp1SgcOHLAtHzx4ULm5uQoLC1PLli2VmpqqWbNmqV27dmrXrp1mzZql4OBgjRgxQpJksVg0atQoTZ48Wc2bN1dYWJimTJmijh07ql+/fpKkDh06aODAgRo9erTeeecdSdKYMWOUlJRU7c3iAQBoSCieAAAAAAAAeJEdO3aoT58+tuWKe4yMHDlSixYt0jPPPKOzZ89q3LhxKigoUI8ePbR27VqFhITYHjNnzhw1atRIw4YN09mzZ9W3b18tWrRI/v7+tj5Lly7VxIkTlZiYKElKTk5WZmZmHe0lAADejeIJAAAAAACAF+ndu7cMw6h2vclkUlpamtLS0qrtExQUpIyMDGVkZFTbJywsTEuWLLmSUAEA8FkUTwAvdfH9WLwJ92MBAAAAAAAA4MtcXjxJS0vTzJkzHdoiIyOVl5cnSTIMQzNnztS7775rm1r61ltv6cYbb7T1t1qtmjJlij788EPb1NJ58+apRYsWrg4XAACA8QsAAAAuy5tPcpQ40REAXM3PHRu98cYbdezYMdvP7t27bevS09P15ptvKjMzU9u3b1dUVJT69++v4uJiW5/U1FStWLFCy5cv16ZNm3Tq1CklJSWprKzMHeECAAAwfgEAAAAAADZuuWxXo0aNFBUVVandMAzNnTtX06dP19ChQyVJixcvVmRkpJYtW6axY8eqsLBQCxYs0AcffKB+/fpJkpYsWaLY2FitW7dOAwYMcEfIAACggWP8AgAAAAAAKrileLJ//37FxMTIbDarR48emjVrlq655hodPHhQeXl5SkxMtPU1m83q1auXcnJyNHbsWO3cuVOlpaUOfWJiYhQXF6ecnJxqv3ywWq2yWq225aKiIklSaWmpSktL3bGbXq9ivz29/2b/6m9y523MfobDv6jaxceWp4+xi3nrMVdxXHlbvryVtx5f7tSQ9tUbeWL8AgAAAAAAvJPLiyc9evTQ+++/r+uuu07Hjx/Xyy+/rISEBO3du9d23fDIyEiHx0RGRurw4cOSpLy8PAUGBqpZs2aV+lQ8viqzZ8+udK1ySVq7dq2Cg4OvdLfqtezsbI8+f3p3jz59rbzUrdzTIXi11atXOyx7+hi7mLcfc96WL2/XkPJ15swZT4fQYHlq/OKNJ3/UZeHSW4vd0pXvvzvz6Mt5q2pbDaGw7M7X1BUnBzWE1+ByGtLx6CxyAgAAfJXLiyeDBg2y/b9jx46Kj49X27ZttXjxYvXs2VOSZDKZHB5jGEaltotdrs+0adM0adIk23JRUZFiY2OVmJio0NDQ2uxKvVdaWqrs7Gz1799fAQEBHosjLm2Nx57bWWY/Qy91K9cLO/xkLb/0MdmQ7Um7cAa1txxjF/PWY67i+PK2fHkrbz2+3Knii3PUPU+NX7z55I+6KFx6c7H74hMFassdeWwIebPXEIrodfGaXsnJQe54XeurhnA8OouTPwAAgK9yy2W77DVp0kQdO3bU/v37dffdd0u6cHZmdHS0rU9+fr7tbM6oqCiVlJSooKDA4ezN/Px8JSQkVPs8ZrNZZrO5UntAQECD+dKtOp7OgbWs/hUhrOWmehl3Xbn4ePL0MXYxb3/tvC1f3q4h5auh7Gd9UFfjF288+aMuC5feWuyW/u9EgdpyZx59OW/2GlIR3Z2vqStODnLl61pfNaTj0Vmc/AEAAHyV24snVqtV33//vW677Ta1adNGUVFRys7OVpcuXSRJJSUl2rBhg1577TVJUteuXRUQEKDs7GwNGzZMknTs2DHt2bNH6enp7g4XAACgzsYv3nzyR13E4M3Fblftuzvy2BDydvE2Pf1+cLe6eE2v5OQgX8+/MxrC8egs8gEAAHyVy4snU6ZM0ZAhQ9SyZUvl5+fr5ZdfVlFRkUaOHCmTyaTU1FTNmjVL7dq1U7t27TRr1iwFBwdrxIgRkiSLxaJRo0Zp8uTJat68ucLCwjRlyhR17NhR/fr1c3W4AAAAjF8AAAAAAIADlxdPjhw5ogceeEC//PKLfvOb36hnz57asmWLWrVqJUl65plndPbsWY0bN04FBQXq0aOH1q5dq5CQENs25syZo0aNGmnYsGE6e/as+vbtq0WLFsnf39/V4QIAADB+AQAAAAAADlxePFm+fPkl15tMJqWlpSktLa3aPkFBQcrIyFBGRoaLowMAAKiM8QsAAAAAALDn9nueAADqh9ZTV3k6BAdmf0Pp3S/cRHffK0meDgcAAAAAAAANiJ+nAwAAAAAAAAAAAPAmFE8AAAAAAAAAAADsUDwBAAAAAAAAAACwQ/EEAAAAAAAAAADADsUTAAAAAAAAAAAAOxRPAAAAAAAAAAAA7FA8AQAAAAAAAAAAsEPxBAAAAAAAAAAAwA7FEwAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsUDwBAAAAAAAAAACw08jTAQAAAAAAAACS1HrqKo8+v9nfUHp3KS5tjaxlJo/GAgDwLGaeAAAAAAAAAAAA2KF4AgAAAAAAAAAAYIfiCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2Gnk6AAAAAAAAAAAAXKH11FVu3b7Z31B6dykubY2sZSanHnvo1cFuigruwMwTAAAAAAAAAAAAOxRPAAAAAAAAAAAA7HDZLgAAAAAu4cpLJFzJ5RCqwiUSAAAAADiD4okT3H29vCvBh0EAAAAAAAAAAFyD4gkAAAAAoF6qqxPcajMTihPcAAAA6jeKJwBQx1x1+REAAAAAAAAA7sEN4wEAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsNPJ0AHCN1lNXVWoz+xtK7y7Fpa2RtczkgagAAICnVTVGuBTGD/BVzr4XAAAAADRszDwBAAAAAAAAAACww8wTAAAAAAAAAADcjNnQ9YvXF0/mzZun119/XceOHdONN96ouXPn6rbbbvN0WACAOuTNg4tDrw72dAjwMoxdAPgab/477M28OW+MX3Axxi8AAFTm1Zft+uijj5Samqrp06dr165duu222zRo0CD9+OOPng4NAACgEsYuAACgvmH8AgBA1by6ePLmm29q1KhReuyxx9ShQwfNnTtXsbGxevvttz0dGgAAQCWMXQAAQH3D+AUAgKp57WW7SkpKtHPnTk2dOtWhPTExUTk5OZX6W61WWa1W23JhYaEk6ddff1VpaalLYmp0/rRLtlNXGpUbOnOmXI1K/VRWbvJ0OPUCOauZEydOSJJKS0t15swZnThxQgEBAR6O6v9463uV48s59SVfFe8HVyguLpYkGYbhsm2i7jg7dpG8c/xSX9577nal7213/o301r9zrsax6Brk0TV8LY+MX1DBG8cvnv47V5/f79dO+ZunQ6jW1ml9JXnv9wi+hBy7//dIff49UV9UlWNXjV+cGbt4bfHkl19+UVlZmSIjIx3aIyMjlZeXV6n/7NmzNXPmzErtbdq0cVuM9cEITwdQD5Gzywv/o6cjqL84vpxTH/LljvdDcXGxLBaL6zcMt3J27CJ57/ilPrz33I2/dd6BY9E1yKNr+FIeGb+ggi+NX1zJl97v3oKxFXwNvyfc7+Icu/r3SE3GLl5bPKlgMjlW7wzDqNQmSdOmTdOkSZNsy+Xl5fr111/VvHnzKvs3BEVFRYqNjdVPP/2k0NBQT4dTL5Az55Av55Av5zTEfBmGoeLiYsXExHg6FFyBmo5dJO8cvzTE9547kMcrRw5dgzy6BnmsHuMX31Dfxy+uxPvdvciv+5Fj9yPH7ufOHDszdvHa4kl4eLj8/f0rnemQn59f6YwISTKbzTKbzQ5tTZs2dWeI9UZoaChvZCeRM+eQL+eQL+c0tHxxxmb95ezYRfLu8UtDe++5C3m8cuTQNcija5DHqjF+qb98bfziSrzf3Yv8uh85dj9y7H7uynFNxy5ee8P4wMBAde3aVdnZ2Q7t2dnZSkhI8FBUAAAAVWPsAgAA6hvGLwAAVM9rZ55I0qRJk5SSkqJu3bopPj5e7777rn788Uc9/vjjng4NAACgEsYuAACgvmH8AgBA1by6eDJ8+HCdOHFCL774oo4dO6a4uDitXr1arVq18nRo9YLZbNaMGTMqTadF9ciZc8iXc8iXc8gX6iNfGLvw3nMN8njlyKFrkEfXII/wZb4wfnEl3u/uRX7djxy7Hzl2P2/JsckwDMOjEQAAAAAAAAAAAHgRr73nCQAAAAAAAAAAgCdQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE/qkeLiYqWmpqpVq1Zq3LixEhIStH37dklSaWmpnn32WXXs2FFNmjRRTEyMHn74YR09evSS21y0aJFMJlOln3PnztXFLrnVpfIlSWlpabr++uvVpEkTNWvWTP369dPWrVsvu92PP/5YN9xwg8xms2644QatWLHCnbtRZ9yRL18+vqTL58ze2LFjZTKZNHfu3Mtut6EeY/Zqmi9fP8aAutS6detK76WpU6c69Pnxxx81ZMgQNWnSROHh4Zo4caJKSko8FLF3s1qtuummm2QymZSbm+uwrqrfW/Pnz/dMoF7uUnnkeLy85ORktWzZUkFBQYqOjlZKSkqlzwccj5dXkzxyPAL138aNGzVkyBDFxMTIZDLp008/9XRIPmX27Nm6+eabFRISooiICN19993at2+fp8PyKW+//bY6deqk0NBQhYaGKj4+Xv/4xz88HZbPmj17tkwmk1JTUz0dis9IS0urNC6NioryaEwUT+qRxx57TNnZ2frggw+0e/duJSYmql+/fvrvf/+rM2fO6JtvvtELL7ygb775Rp988on+85//KDk5+bLbDQ0N1bFjxxx+goKC6mCP3OtS+ZKk6667TpmZmdq9e7c2bdqk1q1bKzExUT///HO129y8ebOGDx+ulJQU/etf/1JKSoqGDRtWo6KLt3NHviTfPb6ky+eswqeffqqtW7cqJibmsttsyMdYBWfyJfn2MQbUtRdffNHhvfT888/b1pWVlWnw4ME6ffq0Nm3apOXLl+vjjz/W5MmTPRix93rmmWcu+Xts4cKFDrkeOXJkHUZXf1SXR47HmunTp4/+9re/ad++ffr444/1v//7v/rd735XqR/H46VdLo8cj4BvOH36tDp37qzMzExPh+KTNmzYoCeffFJbtmxRdna2zp8/r8TERJ0+fdrTofmMFi1a6NVXX9WOHTu0Y8cO3XHHHbrrrru0d+9eT4fmc7Zv3653331XnTp18nQoPufGG290GJfu3r3bswEZqBfOnDlj+Pv7G1988YVDe+fOnY3p06dX+Zht27YZkozDhw9Xu92FCxcaFovFlaF6hdrkq7Cw0JBkrFu3rtrtDhs2zBg4cKBD24ABA4z777//yoP2IHfly1ePL8Ooec6OHDliXH311caePXuMVq1aGXPmzLnkdhv6MeZsvnz5GAPq2uXec6tXrzb8/PyM//73v7a2Dz/80DCbzUZhYWEdRFh/rF692rj++uuNvXv3GpKMXbt2OayXZKxYscIjsdUnl8ojx2PtfPbZZ4bJZDJKSkpsbRyPzrs4jxyPgO/hd6P75efnG5KMDRs2eDoUn9asWTPjL3/5i6fD8CnFxcVGu3btjOzsbKNXr17GU0895emQfMaMGTOMzp07ezoMB8w8qSfOnz+vsrKySmdTN27cWJs2baryMYWFhTKZTGratOklt33q1Cm1atVKLVq0UFJSknbt2uWqsD3G2XyVlJTo3XfflcViUefOnavd7ubNm5WYmOjQNmDAAOXk5LgmcA9xV74k3zy+pJrlrLy8XCkpKXr66ad144031mi7DfkYq02+JN89xgBPeO2119S8eXPddNNNeuWVVxwuObN582bFxcU5zAIYMGCArFardu7c6YlwvdLx48c1evRoffDBBwoODq623/jx4xUeHq6bb75Z8+fPV3l5eR1G6f0ul0eOR+f9+uuvWrp0qRISEhQQEOCwjuOx5qrKI8cjADivsLBQkhQWFubhSHxTWVmZli9frtOnTys+Pt7T4fiUJ598UoMHD1a/fv08HYpP2r9/v2JiYtSmTRvdf//9+uGHHzwaD8WTeiIkJETx8fF66aWXdPToUZWVlWnJkiXaunWrjh07Vqn/uXPnNHXqVI0YMUKhoaHVbvf666/XokWLtHLlSn344YcKCgrSLbfcov3797tzd9yupvn64osvdNVVVykoKEhz5sxRdna2wsPDq91uXl6eIiMjHdoiIyOVl5fntn2pC+7Kl68eX1LNcvbaa6+pUaNGmjhxYo2325CPsdrky5ePMaCuPfXUU1q+fLnWr1+v8ePHa+7cuRo3bpxtfVW/n5o1a6bAwMB6/zvKVQzD0COPPKLHH39c3bp1q7bfSy+9pL///e9at26d7r//fk2ePFmzZs2qw0i9W03yyPFYc88++6yaNGmi5s2b68cff9Rnn33msJ7jsWYulUeORwBwjmEYmjRpkm699VbFxcV5Ohyfsnv3bl111VUym816/PHHtWLFCt1www2eDstnLF++XN98841mz57t6VB8Uo8ePfT+++9rzZo1eu+995SXl6eEhASdOHHCc0F5eOYLnHDgwAHj9ttvNyQZ/v7+xs0332w8+OCDRocOHRz6lZSUGHfddZfRpUsXp6eJl5WVGZ07dzYmTJjgytA9oib5OnXqlLF//35j8+bNxqOPPmq0bt3aOH78eLXbDAgIMJYtW+bQtmTJEsNsNrttP+qKO/J1MV86vgzj0jnbsWOHERkZ6XD5hppchqqhHmO1zdfFfO0YA67UjBkzDEmX/Nm+fXuVj/1//+//GZKMX375xTAMwxg9erSRmJhYqV9AQIDx4YcfunU/PK2mefzTn/5kJCQkGOfPnzcMwzAOHjxY5WW7LvbGG28YoaGhdbAnnuXKPHI81vx9/fPPPxv79u0z1q5da9xyyy3GnXfeaZSXl1e7fY5H5/PYkI9HwFeJy3a51bhx44xWrVoZP/30k6dD8TlWq9XYv3+/sX37dmPq1KlGeHi4sXfvXk+H5RN+/PFHIyIiwsjNzbW1cdku9zp16pQRGRlp/PGPf/RYDI1cXo2B27Rt21YbNmzQ6dOnVVRUpOjoaA0fPlxt2rSx9SktLdWwYcN08OBBffXVV5ecdVIVPz8/3XzzzT5x1nZN8tWkSRNde+21uvbaa9WzZ0+1a9dOCxYs0LRp06rcZlRUVKWzx/Lz8yudaVYfuSNfF/Ol40u6dM7++c9/Kj8/Xy1btrT1Lysr0+TJkzV37lwdOnSoym021GOstvm6mK8dY8CVGj9+vO6///5L9mndunWV7T179pQkHThwQM2bN1dUVJS2bt3q0KegoEClpaU+8TvqUmqax5dffllbtmyR2Wx2WNetWzc9+OCDWrx4cZWP7dmzp4qKinT8+HGfzqUr88jxWPP3dXh4uMLDw3XdddepQ4cOio2N1ZYtW6q9hAfH4/+paR4b8vEIAM6aMGGCVq5cqY0bN6pFixaeDsfnBAYG6tprr5V0Yey0fft2/elPf9I777zj4cjqv507dyo/P19du3a1tZWVlWnjxo3KzMyU1WqVv7+/ByP0PU2aNFHHjh09+h0PxZN6qEmTJmrSpIkKCgq0Zs0apaenS/q/wsn+/fu1fv16NW/e3OltG4ah3NxcdezY0dVhe0x1+aqKYRiyWq3Vro+Pj1d2drb+53/+x9a2du1aJSQkuDRmT3Jlvqrq72vHl1R1zu69995K178cMGCAUlJS9Pvf/77abTXUY6y2+bqYrx5jQG1VfNlXGxX3D4qOjpZ04ffTK6+8omPHjtna1q5dK7PZ7PABwhfVNI9//vOf9fLLL9uWjx49qgEDBuijjz5Sjx49qn3crl27FBQUdNn71NV3rswjx2Pt3teGYUjSJcdvHI+Xd3EeG/LxCAA1ZRiGJkyYoBUrVujrr792OFET7uPs9zaoXt++fbV7926Htt///ve6/vrr9eyzz1I4cQOr1arvv/9et912m8dioHhSj6xZs0aGYah9+/Y6cOCAnn76abVv316///3vdf78ef3ud7/TN998oy+++EJlZWW2s9fDwsIUGBgoSXr44Yd19dVX267NN3PmTNsMgqKiIv35z39Wbm6u3nrrLY/tp6tcKl+nT5/WK6+8ouTkZEVHR+vEiROaN2+ejhw5ovvuu8+2jYvz9dRTT+n222/Xa6+9prvuukufffaZ1q1bV+VN1esbd+TLl48v6dI5CwgIqFTADAgIUFRUlNq3b29r4xi7snz5+jEG1JXNmzdry5Yt6tOnjywWi7Zv367/+Z//UXJysm1GWGJiom644QalpKTo9ddf16+//qopU6Zo9OjRTs909VX2s+ck6aqrrpJ0YeZdxZmVn3/+ufLy8hQfH6/GjRtr/fr1mj59usaMGVNppkVDVZM8cjxe3rZt27Rt2zbdeuutatasmX744Qf94Q9/UNu2bW2zTjgeL68meeR4BHzDqVOndODAAdvywYMHlZubq7CwsEp/m+C8J598UsuWLdNnn32mkJAQ23dWFotFjRs39nB0vuG5557ToEGDFBsbq+LiYi1fvlxff/21srKyPB2aTwgJCal0j56K+6Fx7x7XmDJlioYMGaKWLVsqPz9fL7/8soqKijRy5EjPBeWJa4Whdj766CPjmmuuMQIDA42oqCjjySefNE6ePGkYxv9dC7qqn/Xr19u20atXL2PkyJG25dTUVKNly5ZGYGCg8Zvf/MZITEw0cnJy6njP3ONS+Tp79qxxzz33GDExMUZgYKARHR1tJCcnG9u2bXPYxsX5MgzD+Pvf/260b9/eCAgIMK6//nrj448/rqtdcit35MuXjy/DuHTOqlLVPTw4xq4sX75+jAF1ZefOnUaPHj0Mi8ViBAUFGe3btzdmzJhhnD592qHf4cOHjcGDBxuNGzc2wsLCjPHjxxvnzp3zUNTer6p7dfzjH/8wbrrpJuOqq64ygoODjbi4OGPu3LlGaWmp5wL1ctXdO4bj8dK+/fZbo0+fPkZYWJhhNpuN1q1bG48//rhx5MgRWx+Ox8urSR4Ng+MR8AXr16+v8juViz+voXaq+85q4cKFng7NZzz66KNGq1atbJ+P+/bta6xdu9bTYfk07nniWsOHDzeio6ONgIAAIyYmxhg6dKjH79ljMoz/f84xAAAAAAAAAAAA5OfpAAAAAAAAAAAAALwJxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsUDwBAAAAAAAAAACwQ/EEAAAAAAAAAADADsUTAC516NAhmUwmLVq0yNOhVOvrr7+WyWTS119/7elQAAAAAAAAAHghiicAAAAAAAAAAAB2KJ4A9YBhGDp79qynwwAAAAAAAACABoHiCVCH0tLSZDKZtHfvXj3wwAOyWCyKjIzUo48+qsLCQls/k8mk8ePHa/78+erQoYPMZrMWL15c5Tbz8vI0duxYtWjRQoGBgWrTpo1mzpyp8+fP2/pUXErr9ddf12uvvabWrVurcePG6t27t/7zn/+otLRUU6dOVUxMjCwWi+655x7l5+c7PE/r1q2VlJSkFStWqFOnTgoKCtI111yjP//5zzXa902bNqlv374KCQlRcHCwEhIStGrVKocYGzVqpNmzZ1d67MaNG2UymfT3v//d1rZ//36NGDFCERERMpvN6tChg956661Kj/33v/+tgQMHKjg4WOHh4Xr88cdVXFxco5gBAAAAAAAANEyNPB0A0BDde++9Gj58uEaNGqXdu3dr2rRpkqS//vWvtj6ffvqp/vnPf+oPf/iDoqKiFBERUWk7eXl56t69u/z8/PSHP/xBbdu21ebNm/Xyyy/r0KFDWrhwoUP/t956S506ddJbb72lkydPavLkyRoyZIh69OihgIAA/fWvf9Xhw4c1ZcoUPfbYY1q5cqXD43Nzc5Wamqq0tDRFRUVp6dKleuqpp1RSUqIpU6ZUu78bNmxQ//791alTJy1YsEBms1nz5s3TkCFD9OGHH2r48OFq3bq1kpOTNX/+fD3zzDPy9/e3PT4zM1MxMTG65557JEnfffedEhIS1LJlS/3xj39UVFSU1qxZo4kTJ+qXX37RjBkzJEnHjx9Xr169FBAQoHnz5ikyMlJLly7V+PHjnXzFAAAAAAAAADQkFE8ADxg1apSefvppSVK/fv104MAB/fWvf9WCBQtkMpkkSadOndLu3bvVrFmzareTlpamgoIC7d27Vy1btpQk9e3bV40bN9aUKVP09NNP64YbbrD1b9q0qT799FP5+V2YdPbLL78oNTVV119/vT777DNbv3//+9+aO3euioqKFBoaams/evSodu3apc6dO0uSBg0apPz8fL300ksaN26cgoODq4xz6tSpatasmb7++mtdddVVkqSkpCTddNNNmjJlioYNGyaTyaSJEyeqT58++vzzz3X33XfbnnPFihV64YUX1KjRhV9ZkyZNUkhIiDZt2mSLr3///rJarXr11Vc1ceJENWvWTHPmzNHPP/9cKebExET9+OOPNXmpAAAAAAAAADRAXLYL8IDk5GSH5U6dOuncuXMOl8q64447Llk4kaQvvvhCffr0UUxMjM6fP2/7GTRokKQLMz7s3XnnnbbCiSR16NBBkjR48GCHfhXtFxcYbrzxRlsRosKIESNUVFSkb775psoYT58+ra1bt+p3v/udrXAiSf7+/kpJSdGRI0e0b98+SVLv3r3VuXNnh8tvzZ8/XyaTSWPGjJEknTt3Tl9++aXuueceBQcHO+z3nXfeqXPnzmnLli2SpPXr11cbMwAAAAAAAABUh+IJ4AHNmzd3WDabzZLkcFP46Ojoy27n+PHj+vzzzxUQEODwc+ONN0q6MLPEXlhYmMNyYGDgJdvPnTvn0B4VFVUphoq2EydOVBljQUGBDMOocn9iYmIqPXbixIn68ssvtW/fPpWWluq9997T7373O4fnOX/+vDIyMirt95133umw3ydOnLhkzAAAAAAAAABQFS7bBXipist3XUp4eLg6deqkV155pcr1FcUJV8nLy6u27eKCUIVmzZrJz89Px44dq7Tu6NGjki7sR4URI0bo2Wef1VtvvaWePXsqLy9PTz75pMP2Kmat2Lfba9OmjS2mS8UMAAAAAAAAAFWheALUY0lJSVq9erXatm172Ut8ucLevXv1r3/9y+EyWMuWLVNISIh++9vfVvmYJk2aqEePHvrkk0/0xhtvqHHjxpKk8vJyLVmyRC1atNB1111n6x8UFKQxY8YoMzNTOTk5uummm3TLLbfY1gcHB6tPnz7atWuXOnXqZJslU5U+ffooPT29ypgBAAAAAAAAoDpctguoJ95//301atRI77//vq3txRdfVEBAgBISEvT222/rq6++0urVqzVv3jwlJSXpyJEjLo0hJiZGycnJWrhwobKysvTQQw8pOztbzz//fLU3i5ek2bNn68SJE+rTp4/+3//7f1q5cqXuvPNO7dmzR2+88UalWTbjxo3TmTNntHPnTo0fP77S9v70pz/pxx9/1G233aZFixbp66+/1ueff645c+bojjvusPVLTU1VeHi4Bg8erEWLFukf//iHHnroIf373/92XVIAAAAAAAAA+BxmngD1RHl5ucrKylReXm5ri46O1o4dO/TSSy/p9ddf15EjRxQSEqI2bdpo4MCBLp+NctNNN+n3v/+9ZsyYof379ysmJkZvvvmm/ud//ueSj+vVq5e++uorzZgxQ4888ojKy8vVuXNnrVy5UklJSZX6X3311br11lv17bffVnlz9xtuuEHffPONXnrpJT3//PPKz89X06ZN1a5dO9t9T6QL9zbZsGGDnnrqKT3xxBMKDg7WPffco8zMTN11111XnhAAAAAAAAAAPslkGIbh6SAAeL/WrVsrLi5OX3zxhdufKz8/X61atdKECROUnp7u9ucDAAAAAAAAAHvMPAHgNY4cOaIffvhBr7/+uvz8/PTUU095OiQAAAAAAAAADRD3PAHgNf7yl7+od+/e2rt3r5YuXaqrr77a0yEBAAAAAAAAaIC4bBcAAAAAAAAAAIAdZp4AAAAAAAAAAADYoXgCAAAAAAAAAABgh+IJAAAAAAAAAACAnUaeDsBdysvLdfToUYWEhMhkMnk6HAAALsswDBUXFysmJkZ+fpzfAAAAAAAA4Ck+Wzw5evSoYmNjPR0GAABO++mnn9SiRQtPhwEAAAAAANBg+WzxJCQkRNKFL6BCQ0M9HI33Ki0t1dq1a5WYmKiAgABPh+O1yFPNkKeaIU810xDzVFRUpNjYWNvfMAAAAAAAAHiGzxZPKi7VFRoaSvHkEkpLSxUcHKzQ0NAG8+VkbZCnmiFPNUOeaqYh54nLTQIAAAAAAHgWF1QHAAAAAAAAAACwQ/EEAAAAAAAAAADADsUTAAAAAAAAAAAAOxRPAAAAAAAAAAAA7FA8AQAAAAAAAAAAsNPI0wEAAHA5raeu8nQI1Tr06mBPhwAAAAAAAAAXY+YJAAAAAAAAAACAHYonAAAAAAAAAAAAdiieAAAAAAAAAAAA2KF4AgAAAAAAAAAAYIfiCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHacLp5s3LhRQ4YMUUxMjEwmkz799FOH9Y888ohMJpPDT8+ePR36WK1WTZgwQeHh4WrSpImSk5N15MgRhz4FBQVKSUmRxWKRxWJRSkqKTp486fQOAgAAAAAAAAAAOMPp4snp06fVuXNnZWZmVttn4MCBOnbsmO1n9erVDutTU1O1YsUKLV++XJs2bdKpU6eUlJSksrIyW58RI0YoNzdXWVlZysrKUm5urlJSUpwNFwAAAAAAAAAAwCmNnH3AoEGDNGjQoEv2MZvNioqKqnJdYWGhFixYoA8++ED9+vWTJC1ZskSxsbFat26dBgwYoO+//15ZWVnasmWLevToIUl67733FB8fr3379ql9+/bOhg0AAAAAAAAAAFAjThdPauLrr79WRESEmjZtql69eumVV15RRESEJGnnzp0qLS1VYmKirX9MTIzi4uKUk5OjAQMGaPPmzbJYLLbCiST17NlTFotFOTk5VRZPrFarrFarbbmoqEiSVFpaqtLSUnfspk+oyA05ujTyVDPkqWbIU83Y58nsb3g4muq58nXkmAAAAAAAAPAOLi+eDBo0SPfdd59atWqlgwcP6oUXXtAdd9yhnTt3ymw2Ky8vT4GBgWrWrJnD4yIjI5WXlydJysvLsxVb7EVERNj6XGz27NmaOXNmpfa1a9cqODjYBXvm27Kzsz0dQr1AnmqGPNUMeaqZ7OxspXf3dBTVu/jSlFfizJkzLtsWAAAAAAAAas/lxZPhw4fb/h8XF6du3bqpVatWWrVqlYYOHVrt4wzDkMlksi3b/7+6PvamTZumSZMm2ZaLiooUGxurxMREhYaG1mZXGoTS0lJlZ2erf//+CggI8HQ4Xos81Qx5qhnyVDP2eeryyleeDqdae9IGuGxbFbMmAQAAAAAA4FluuWyXvejoaLVq1Ur79++XJEVFRamkpEQFBQUOs0/y8/OVkJBg63P8+PFK2/r5558VGRlZ5fOYzWaZzeZK7QEBAXw5WQPkqWbIU82Qp5ohTzUTEBAga1nVhXNv4MrXkOMBAAAAAADAO/i5+wlOnDihn376SdHR0ZKkrl27KiAgwOFyNceOHdOePXtsxZP4+HgVFhZq27Zttj5bt25VYWGhrQ8AAAAAAAAAAIA7OD3z5NSpUzpw4IBt+eDBg8rNzVVYWJjCwsKUlpame++9V9HR0Tp06JCee+45hYeH65577pEkWSwWjRo1SpMnT1bz5s0VFhamKVOmqGPHjurXr58kqUOHDho4cKBGjx6td955R5I0ZswYJSUlVXmzeAAAAAAAAAAAAFdxuniyY8cO9enTx7ZccZ+RkSNH6u2339bu3bv1/vvv6+TJk4qOjlafPn300UcfKSQkxPaYOXPmqFGjRho2bJjOnj2rvn37atGiRfL397f1Wbp0qSZOnKjExERJUnJysjIzM2u9owAAAAAAAAAAADXhdPGkd+/eMgyj2vVr1qy57DaCgoKUkZGhjIyMavuEhYVpyZIlzoYHAAAAAAAAAABwRdx+zxMAAAAAAAAAAID6hOIJAAAAAAAAAACAHYonAAAAAAAAAAAAdiieAAAAAAAAAAAA2KF4AgAAAAAAAAAAYIfiCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAAAAAABgh+IJAAAAAAAAAACAHYonAAAAAAAAAAAAdiieAAAAAAAAAAAA2KF4AgAAAAAAAAAAYIfiCQAAAAAAAAAAgB2KJwAAAAAAAAAAAHYongAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAAAAAABgp5GnAwAAeIfWU1d5OgQHZn9D6d2luLQ1kkyeDgcAAAAAAAANCDNPAAAAAAAAAAAA7FA8AQAAAAAAAAAAsEPxBAAAAAAAAAAAwA7FEwAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsOF082bhxo4YMGaKYmBiZTCZ9+umnDusNw1BaWppiYmLUuHFj9e7dW3v37nXoY7VaNWHCBIWHh6tJkyZKTk7WkSNHHPoUFBQoJSVFFotFFotFKSkpOnnypNM7CAAAAAAAAAAA4AyniyenT59W586dlZmZWeX69PR0vfnmm8rMzNT27dsVFRWl/v37q7i42NYnNTVVK1as0PLly7Vp0yadOnVKSUlJKisrs/UZMWKEcnNzlZWVpaysLOXm5iolJaUWuwgAAAAAAAAAAFBzjZx9wKBBgzRo0KAq1xmGoblz52r69OkaOnSoJGnx4sWKjIzUsmXLNHbsWBUWFmrBggX64IMP1K9fP0nSkiVLFBsbq3Xr1mnAgAH6/vvvlZWVpS1btqhHjx6SpPfee0/x8fHat2+f2rdvX9v9BQAAAAAAAAAAuCSniyeXcvDgQeXl5SkxMdHWZjab1atXL+Xk5Gjs2LHauXOnSktLHfrExMQoLi5OOTk5GjBggDZv3iyLxWIrnEhSz549ZbFYlJOTU2XxxGq1ymq12paLiookSaWlpSotLXXlbvqUityQo0sjTzVDnmrGW/Nk9jc8HYIDs5/h8K+3cuXr6G3HBAAAAAAAQEPl0uJJXl6eJCkyMtKhPTIyUocPH7b1CQwMVLNmzSr1qXh8Xl6eIiIiKm0/IiLC1udis2fP1syZMyu1r127VsHBwc7vTAOTnZ3t6RDqBfJUM+SpZrwtT+ndPR1B1V7qVu7pEC5p9erVLtvWmTNnXLYtAAAAAAAA1J5LiycVTCaTw7JhGJXaLnZxn6r6X2o706ZN06RJk2zLRUVFio2NVWJiokJDQ50Jv0EpLS1Vdna2+vfvr4CAAE+H47XIU82Qp5rx1jzFpa3xdAgOzH6GXupWrhd2+Mlafum/IZ60J22Ay7ZVMWsSAAAAAAAAnuXS4klUVJSkCzNHoqOjbe35+fm22ShRUVEqKSlRQUGBw+yT/Px8JSQk2PocP3680vZ//vnnSrNaKpjNZpnN5krtAQEBXvXlpLciTzVDnmqGPNWMt+XJWuadBQpruclrY5Pk0tfQm44HAAAAAACAhszPlRtr06aNoqKiHC5FU1JSog0bNtgKI127dlVAQIBDn2PHjmnPnj22PvHx8SosLNS2bdtsfbZu3arCwkJbHwAAAAAAAAAAAHdweubJqVOndODAAdvywYMHlZubq7CwMLVs2VKpqamaNWuW2rVrp3bt2mnWrFkKDg7WiBEjJEkWi0WjRo3S5MmT1bx5c4WFhWnKlCnq2LGj+vXrJ0nq0KGDBg4cqNGjR+udd96RJI0ZM0ZJSUlV3iweAAAAAAAAAADAVZwunuzYsUN9+vSxLVfcZ2TkyJFatGiRnnnmGZ09e1bjxo1TQUGBevToobVr1yokJMT2mDlz5qhRo0YaNmyYzp49q759+2rRokXy9/e39Vm6dKkmTpyoxMRESVJycrIyMzNrvaMAAAAAAAAAAAA14XTxpHfv3jIMo9r1JpNJaWlpSktLq7ZPUFCQMjIylJGRUW2fsLAwLVmyxNnwAAAAAAAAAAAArohL73kCAAAAAAAAAABQ31E8AQAAAAAAAAAAsEPxBAAAAAAAAAAAwA7FEwAAAAAAAAAAADsUTwAAAAAAAAAAAOxQPAEAAAAAAAAAALBD8QQAAAAAAAAAAMAOxRMAAAAAAAAAAAA7FE8AAAAAAAAAAADsUDwBAAAAAAAAAACw08jTAQCon1pPXVWpzexvKL27FJe2RtYykweiuuDQq4M99twAAAAAAAAA6j9mngAAAAAAAAAAANiheAIAAAAAAAAAAGCH4gkAAAAAAAAAAIAdiicAAAAAAAAAAAB2KJ4AAAAAAAAAAADYoXgCAAAAAAAAAABgh+IJAAAAAAAAAACAHYonAAAAAAAAAAAAdiieAAAAAAAAAAAA2KF48v+1d3cxVpXnHsD/IwwjEhiFqTNMgxxKsGmANBFz+GgqJBUMLZLGJkohtBfW2ja1JUhaiWkYewhYk0NNNLY2afxobeiNXtRjOI5JS2rQygFpAG1LWg6UwkAdELDgMIdZ58Kwu3eHj1EG92bm90t2nFnrXe9+97Meb+bPuzYAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAEAZ4QkAAAAAAECZfg9P2traUldXV/FqaWkpnS+KIm1tbWltbc3w4cMzZ86c7Ny5s2KOrq6u3HPPPWlqasqIESOycOHC7Nu3r7+XCgAAAAAA0Msl2XkyefLkHDhwoPTavn176dxDDz2UdevW5dFHH83mzZvT0tKSuXPn5vjx46Uxy5Yty3PPPZf169fn5ZdfzjvvvJMFCxbk9OnTl2K5AAAAAAAAJUMvyaRDh1bsNjmjKIo8/PDDuf/++3PbbbclSZ566qk0NzfnF7/4Re6+++4cPXo0P/3pT/Ozn/0sN998c5Lk5z//ecaNG5eXXnopt9xyy6VYMgAAAAAAQJJLFJ7s2rUrra2taWhoyPTp07NmzZp87GMfy+7du9PR0ZF58+aVxjY0NGT27NnZtGlT7r777mzZsiXd3d0VY1pbWzNlypRs2rTpnOFJV1dXurq6Sr8fO3YsSdLd3Z3u7u5L8TEHhDO1UaPzU6feGoYUvY9dUVT8t1pq/T7Vaj+d7Z5WU63004X0532stZ4AAAAAGKz6PTyZPn16nn766Vx//fU5ePBgVq9enVmzZmXnzp3p6OhIkjQ3N1dc09zcnD179iRJOjo6MmzYsFxzzTW9xpy5/mzWrl2bBx54oNfxF198MVddddXFfqwBr729vdpLuCyo0z899O/nPvcfN/Z8eAs5ixdeeKGq799XtdZP57un1VTtfrqQ/uy3EydO9NtcAAAAAHxw/R6ezJ8/v/Tz1KlTM3PmzEycODFPPfVUZsyYkSSpq6uruKYoil7H/tWFxqxcuTLLly8v/X7s2LGMGzcu8+bNy6hRoz7IRxkUuru7097enrlz56a+vr7ay6lZ6tTblLb/7nWs4Yoi/3FjT773P1ekq+f8/09fSjvaavvxfrXaT2e7p9VUK/10If3Zb2d2TQIAAABQXZfksV3lRowYkalTp2bXrl35/Oc/n+S93SVjx44tjTl06FBpN0pLS0tOnTqVI0eOVOw+OXToUGbNmnXO92loaEhDQ0Ov4/X19TX1x8lapU59o07/1HX63H/M7uqpO+/5S+1yuUe11k/VvGfnU+1+upD+vIe11A8AAAAAg9kVl/oNurq68uabb2bs2LGZMGFCWlpaKh5Vc+rUqWzcuLEUjEybNi319fUVYw4cOJAdO3acNzwBAAAAAADoD/2+82TFihW59dZbc9111+XQoUNZvXp1jh07li9/+cupq6vLsmXLsmbNmkyaNCmTJk3KmjVrctVVV2Xx4sVJksbGxtx555259957M2bMmIwePTorVqzI1KlTc/PNN/f3cgEAAAAAACr0e3iyb9++fPGLX8xbb72Vj3zkI5kxY0ZeffXVjB8/Pknyne98JydPnsw3vvGNHDlyJNOnT8+LL76YkSNHlub44Q9/mKFDh+b222/PyZMn85nPfCZPPvlkhgwZ0t/LBQAAAAAAqNDv4cn69evPe76uri5tbW1pa2s755grr7wyjzzySB555JF+Xh0AAAAAAMD5XfLvPAEAAAAAALicCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKCE8AAAAAAADKDK32AoCz+7f7/qvaSzin/33wc9VeAgAAAADAJWPnCQAAAAAAQBk7TwaID7pLoWFIkYf+PZnS9t/pOl3Xz6t6j10KAAAAAABcTuw8AQAAAAAAKGPnCZec7+4AAAAAAOByYucJAAAAAABAGeEJAAAAAABAGeEJAAAAAABAGd958j7U8nd3AAAAAAAA/cPOEwAAAAAAgDLCEwAAAAAAgDI1H5489thjmTBhQq688spMmzYtv/3tb6u9JAAAAAAAYACr6fDkl7/8ZZYtW5b7778/r7/+ej796U9n/vz52bt3b7WXBgAAAAAADFA1HZ6sW7cud955Z77yla/kE5/4RB5++OGMGzcuP/rRj6q9NAAAAAAAYIAaWu0FnMupU6eyZcuW3HfffRXH582bl02bNvUa39XVla6urtLvR48eTZIcPnw43d3d/bKmof/3j36Zp5YM7Sly4kRPhnZfkdM9ddVezoeus7OzT+O6u7tz4sSJdHZ2pr6+/hKv6j213G+dnZ1nXV+t9FNf72u1VKOf+qLWeq5W+ulC+rPfjh8/niQpiqLf5gQAAADg/avZ8OStt97K6dOn09zcXHG8ubk5HR0dvcavMiVBtwAACIBJREFUXbs2DzzwQK/jEyZMuGRrHCgWV3sBVdT0n9VeweXpfHWrhX5yXweOWuinC7kU/Xb8+PE0Njb2/8QAAAAA9EnNhidn1NVV/mvjoih6HUuSlStXZvny5aXfe3p6cvjw4YwZM+as43nPsWPHMm7cuPz1r3/NqFGjqr2cmqVOfaNOfaNOfTMY61QURY4fP57W1tZqLwUAAABgUKvZ8KSpqSlDhgzptcvk0KFDvXajJElDQ0MaGhoqjl199dWXcokDyqhRowbNHycvhjr1jTr1jTr1zWCrkx0nAAAAANVXs18YP2zYsEybNi3t7e0Vx9vb2zNr1qwqrQoAAAAAABjoanbnSZIsX748S5cuzY033piZM2fmJz/5Sfbu3Zuvfe1r1V4aAAAAAAAwQNV0eHLHHXeks7Mz3//+93PgwIFMmTIlL7zwQsaPH1/tpQ0YDQ0NWbVqVa9HnlFJnfpGnfpGnfpGnQAAAAColrqiKIpqLwIAAAAAAKBW1Ox3ngAAAAAAAFSD8AQAAAAAAKCM8AQAAAAAAKCM8AQAAAAAAKCM8OQy19bWlrq6uopXS0tL6XxRFGlra0tra2uGDx+eOXPmZOfOnRVzdHV15Z577klTU1NGjBiRhQsXZt++fRVjjhw5kqVLl6axsTGNjY1ZunRp3n777Q/jI/aL/qjTnDlzes2xaNGiijEDvU7PPvtsbrnlljQ1NaWuri7btm3rNYd+6ludBns/dXd357vf/W6mTp2aESNGpLW1NV/60peyf//+ijkGQz8BAAAAUHuEJwPA5MmTc+DAgdJr+/btpXMPPfRQ1q1bl0cffTSbN29OS0tL5s6dm+PHj5fGLFu2LM8991zWr1+fl19+Oe+8804WLFiQ06dPl8YsXrw427Zty4YNG7Jhw4Zs27YtS5cu/VA/58W62DolyV133VUxx+OPP15xfqDX6R//+Ec+9alP5cEHHzzn9fqpb3VKBnc/nThxIlu3bs33vve9bN26Nc8++2z+9Kc/ZeHChRXXD5Z+AgAAAKDGFFzWVq1aVXzyk58867menp6ipaWlePDBB0vH3n333aKxsbH48Y9/XBRFUbz99ttFfX19sX79+tKYv/3tb8UVV1xRbNiwoSiKonjjjTeKJMWrr75aGvPKK68USYo//OEPl+BT9b+LrVNRFMXs2bOLb3/72+d8j4Fep3K7d+8ukhSvv/56xXH9VOlcdSoK/XQ2r732WpGk2LNnT1EUg6efAAAAAKg9dp4MALt27Upra2smTJiQRYsW5S9/+UuSZPfu3eno6Mi8efNKYxsaGjJ79uxs2rQpSbJly5Z0d3dXjGltbc2UKVNKY1555ZU0NjZm+vTppTEzZsxIY2Njaczl4GLqdMYzzzyTpqamTJ48OStWrKjYmTLQ69QX+un90U+Vjh49mrq6ulx99dVJBlc/AQAAAFBbhlZ7AVyc6dOn5+mnn87111+fgwcPZvXq1Zk1a1Z27tyZjo6OJElzc3PFNc3NzdmzZ0+SpKOjI8OGDcs111zTa8yZ6zs6OnLttdf2eu9rr722NKbWXWydkmTJkiWZMGFCWlpasmPHjqxcuTK///3v097enmTg12nMmDEXvF4/9a1OiX761zq9++67ue+++7J48eKMGjUqyeDpJwAAAABqj/DkMjd//vzSz1OnTs3MmTMzceLEPPXUU5kxY0aSpK6uruKaoih6HftX/zrmbOP7Mk+t6I863XXXXaWfp0yZkkmTJuXGG2/M1q1bc8MNN5x1jrPNU8vOV6fly5d/4HkHUz/1tU766Z916u7uzqJFi9LT05PHHnvsgvMOtH4CAAAAoPZ4bNcAM2LEiEydOjW7du1KS0tLkvT619eHDh0q7bJoaWnJqVOncuTIkfOOOXjwYK/3+vvf/95rt8bl4v3W6WxuuOGG1NfXZ9euXUkGfp36Qj/1rU5nM1j7qbu7O7fffnt2796d9vb20q6TZPD2EwAAAADVJzwZYLq6uvLmm29m7NixpUcCnXkMUJKcOnUqGzduzKxZs5Ik06ZNS319fcWYAwcOZMeOHaUxM2fOzNGjR/Paa6+Vxvzud7/L0aNHS2MuN++3Tmezc+fOdHd3Z+zYsUkGfp36Qj/1rU5nMxj76UxwsmvXrrz00ku9HuU1WPsJAAAAgOqrK4qiqPYi+OBWrFiRW2+9Ndddd10OHTqU1atXZ+PGjdm+fXvGjx+fH/zgB1m7dm2eeOKJTJo0KWvWrMlvfvOb/PGPf8zIkSOTJF//+tfz/PPP58knn8zo0aOzYsWKdHZ2ZsuWLRkyZEiS9x6/s3///jz++ONJkq9+9asZP358fvWrX1Xts78fF1unP//5z3nmmWfy2c9+Nk1NTXnjjTdy7733Zvjw4dm8efOgqdPhw4ezd+/e7N+/P5/73Oeyfv36fPzjH09LS0tpB49+unCd9NP2fPSjH80XvvCFbN26Nc8//3zFLpHRo0dn2LBhSQZHPwEAAABQgwoua3fccUcxduzYor6+vmhtbS1uu+22YufOnaXzPT09xapVq4qWlpaioaGhuOmmm4rt27dXzHHy5Mnim9/8ZjF69Ohi+PDhxYIFC4q9e/dWjOns7CyWLFlSjBw5shg5cmSxZMmS4siRIx/GR+wXF1unvXv3FjfddFMxevToYtiwYcXEiROLb33rW0VnZ2fF+wz0Oj3xxBNFkl6vVatWlcbopwvXST8Vxe7du89aoyTFr3/969Icg6GfAAAAAKg9dp4AAAAAAACU8Z0nAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZYQnAAAAAAAAZf4f8rMCCNSsCXgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mkt.hist();\n", "plt.gcf().set_size_inches(20, 10)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3 - Data Insights Discovered sofar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##### We have a total of 4119 examples and 21 different variables. The data doesn't contain null values, but it contains unknown values. \n", "##### Some of the variables are an object. There are also discrete variables and continuous variables." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4 - Data Clearning & Feature Engineering" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 5 - Data Preparation" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 6 - Creating the Models" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 7 - Evaluating the Models" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 8 - Recommendation & Findings" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 4 }