{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import display, HTML\n",
"display(HTML(\"\"))"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "(unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \\UXXXXXXXX escape (403486649.py, line 4)",
"output_type": "error",
"traceback": [
"\u001b[1;36m Cell \u001b[1;32mIn[1], line 4\u001b[1;36m\u001b[0m\n\u001b[1;33m df = pd.read_csv(\"C:\\Users\\Rafael\\Documents\\DataScience\\Data Analitics\\Week 3\\TU257-Lab2-1-Automated-Data-Profiling.ipynb\")\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \\UXXXXXXXX escape\n"
]
}
],
"source": [
"import pandas as pd\n",
"\n",
"#Change this next command to the location of train.csv on your Computer\n",
"df = pd.read_csv(\"C:\\Users\\Rafael\\Documents\\DataScience\\Data Analitics\\Week 3\\TU257-Lab2-1-Automated-Data-Profiling.ipynb\")\n",
"#df = pd.read_csv(\"C:\\Studies\\TU257\\DataAnalytics\\Week2\\train.csv\")\n",
"df.head(8)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df2 = df.iloc[:,[1,2,4,5,6,7,8,10,11]]\n",
"df2.head(8)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df2.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df2.describe().transpose()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Make sure to install 'ydata_profiling' library before running the following\n",
"#see Lab Notes\n",
"\n",
"from ydata_profiling import ProfileReport\n",
"\n",
"profile = ProfileReport(df2, title=\"Profiling Report\")\n",
"profile"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Can you save the Data Profile Report to a file?\n",
"#Check the package Github site for examples (link to this is in the Lab Notes)\n",
"# https://github.com/ydataai/ydata-profiling\n",
"# Scroll to the bottom of the main GitHub page for examples of saving the report\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Enter the code here\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### See lots more examples of using this library/package for analysing datasets on the Github page. Scroll to bottom of main page to get the links"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}