import gradio as gr import os import PyPDF2 import pandas as pd import openai import zipfile from io import BytesIO from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms import OpenAI from langchain.text_splitter import RecursiveCharacterTextSplitter def detect_language(text): """Detects the language of the input text using OpenAI.""" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "Detect the language of this text."}, {"role": "user", "content": text} ] ) return response["choices"][0]["message"]["content"].strip() # Set up OpenAI API key (replace with your key) openai.api_key = "YOUR_OPENAI_API_KEY" def extract_files_from_zip(zip_path): """Extracts PDF, TXT, and CSV files from a ZIP archive, including subfolders.""" extracted_files = {"pdf": [], "txt": [], "csv": []} with zipfile.ZipFile(zip_path, 'r') as zip_ref: for file_name in zip_ref.namelist(): if file_name.endswith(('.pdf', '.txt', '.csv')): with zip_ref.open(file_name) as file: content = file.read() if file_name.endswith(".pdf"): extracted_files["pdf"].append(BytesIO(content)) elif file_name.endswith(".txt"): extracted_files["txt"].append(BytesIO(content)) elif file_name.endswith(".csv"): extracted_files["csv"].append(BytesIO(content)) return extracted_files def analyze_text(text): """Uses OpenAI to analyze notes, links, and complementary information in the text.""" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "Analyze this document and extract key points, links, and complementary information."}, {"role": "user", "content": text} ] ) return response["choices"][0]["message"]["content"].strip() def get_text_from_pdf(pdf_files): text = "" for pdf in pdf_files: reader = PyPDF2.PdfReader(pdf) for page in reader.pages: text += page.extract_text() + "\n" return text def get_text_from_txt(txt_files): text = "" for txt in txt_files: text += txt.read().decode("utf-8") + "\n" return text def get_text_from_csv(csv_files): text = "" for csv in csv_files: df = pd.read_csv(csv) text += df.to_string() + "\n" return text def create_vector_database(text): splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) texts = splitter.split_text(text) embeddings = OpenAIEmbeddings() vector_db = FAISS.from_texts(texts, embeddings) return vector_db def get_answer(question, vector_db, analysis): retriever = vector_db.as_retriever() docs = retriever.get_relevant_documents(question) if not docs: return "I could not find the answer in the documents. Do you want me to search external sources?" context = "\n".join([doc.page_content for doc in docs]) language = detect_language(question) response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents and their analyses to answer questions."}, {"role": "user", "content": question + "\n\nBased on the following document content:\n" + context + "\n\nAdditional insights:\n" + analysis} ] ) return response["choices"][0]["message"]["content"] def chatbot_interface(zip_file_path, question): if not zip_file_path: return "Please upload a ZIP file before asking a question." extracted_files = extract_files_from_zip(zip_file_path) text = get_text_from_pdf(extracted_files["pdf"]) + get_text_from_txt(extracted_files["txt"]) + get_text_from_csv(extracted_files["csv"]) if not text: return "The ZIP file does not contain valid PDF, TXT, or CSV files. Please upload supported file types." analysis = analyze_text(text) vector_db = create_vector_database(text) return get_answer(question, vector_db, analysis) # Gradio interface demo = gr.Interface( fn=chatbot_interface, inputs=[gr.File(label="Upload ZIP File"), gr.Textbox(label="Ask a question", placeholder="Type your question here...")], outputs=gr.Textbox(label="Answer") ) demo.launch()