import gradio as gr import os import PyPDF2 import pandas as pd import openai import docx import requests import json from docx import Document from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms import OpenAI from langchain.text_splitter import RecursiveCharacterTextSplitter def detect_language(text): """Detects the language of the input text using OpenAI.""" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "Detect the language of this text."}, {"role": "user", "content": text} ] ) return response["choices"][0]["message"]["content"].strip() # Set up OpenAI API key (replace with your key) openai.api_key = "YOUR_OPENAI_API_KEY" def extract_files_from_folder(folder_path): """Scans a folder and its subfolders for PDF, TXT, CSV, DOCX, and IPYNB files.""" extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": [], "ipynb": []} print(f"Scanning folder: {folder_path}") for root, subdirs, files in os.walk(folder_path): print(f"Checking folder: {root}") # Debugging log for subfolders for file_name in files: file_path = os.path.join(root, file_name) print(f"Found file: {file_path}") if file_name.endswith(".pdf"): extracted_files["pdf"].append(file_path) elif file_name.endswith(".txt"): extracted_files["txt"].append(file_path) elif file_name.endswith(".csv"): extracted_files["csv"].append(file_path) elif file_name.endswith(".docx"): extracted_files["docx"].append(file_path) elif file_name.endswith(".ipynb"): extracted_files["ipynb"].append(file_path) print("Files found:", extracted_files) # Debugging log return extracted_files def combine_text_from_files(extracted_files): """Combines text from all extracted files.""" text = ( get_text_from_pdf(extracted_files["pdf"]) + read_text_from_files(extracted_files["txt"]) + get_text_from_csv(extracted_files["csv"]) + get_text_from_docx(extracted_files["docx"]) + get_text_from_ipynb(extracted_files["ipynb"]) ) return text def generate_response(question, text): """Uses OpenAI to answer a question based on extracted text.""" response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a data analytics assistant. Answer the question based on the provided document content."}, {"role": "user", "content": f"{question}\n\nBased on the following document content:\n{text[:3000]}"} # Limit to 3000 characters to avoid excessive token usage ] ) return response["choices"][0]["message"]["content"].strip() def chatbot_interface(question): folder_path = "New_Data_Analytics/" extracted_files = extract_files_from_folder(folder_path) text = combine_text_from_files(extracted_files) print("Final extracted text for chatbot processing:", text[:500]) # Debugging log (First 500 chars) if not text.strip(): return "The folder does not contain valid PDF, TXT, CSV, DOCX, or IPYNB files. Please upload supported file types." return generate_response(question, text) # Gradio interface demo = gr.Interface( fn=chatbot_interface, inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."), outputs=gr.Textbox(label="Answer") ) demo.launch()