Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,40 +2,27 @@ import gradio as gr
|
|
| 2 |
import os
|
| 3 |
import PyPDF2
|
| 4 |
import pandas as pd
|
| 5 |
-
import openai
|
| 6 |
import docx
|
| 7 |
import json
|
|
|
|
| 8 |
from docx import Document
|
| 9 |
-
from langchain_community.embeddings import OpenAIEmbeddings
|
| 10 |
from langchain_community.vectorstores import FAISS
|
| 11 |
-
from langchain_community.llms import OpenAI
|
| 12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
client = openai.Client(api_key=api_key)
|
| 20 |
-
response = client.chat.completions.create(
|
| 21 |
-
model="gpt-3.5-turbo",
|
| 22 |
-
messages=[
|
| 23 |
-
{"role": "system", "content": "Detect the language of this text."},
|
| 24 |
-
{"role": "user", "content": text}
|
| 25 |
-
]
|
| 26 |
-
)
|
| 27 |
-
return response.choices[0].message.content.strip()
|
| 28 |
|
| 29 |
def extract_files_from_folder(folder_path):
|
| 30 |
-
"""Scans a folder
|
| 31 |
extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": [], "ipynb": []}
|
| 32 |
|
| 33 |
-
|
| 34 |
-
for root, subdirs, files in os.walk(folder_path):
|
| 35 |
-
print(f"Checking folder: {root}") # Debugging log for subfolders
|
| 36 |
for file_name in files:
|
| 37 |
file_path = os.path.join(root, file_name)
|
| 38 |
-
print(f"Found file: {file_path}")
|
| 39 |
if file_name.endswith(".pdf"):
|
| 40 |
extracted_files["pdf"].append(file_path)
|
| 41 |
elif file_name.endswith(".txt"):
|
|
@@ -46,12 +33,9 @@ def extract_files_from_folder(folder_path):
|
|
| 46 |
extracted_files["docx"].append(file_path)
|
| 47 |
elif file_name.endswith(".ipynb"):
|
| 48 |
extracted_files["ipynb"].append(file_path)
|
| 49 |
-
|
| 50 |
-
print("Files found:", extracted_files) # Debugging log
|
| 51 |
return extracted_files
|
| 52 |
|
| 53 |
def get_text_from_pdf(pdf_files):
|
| 54 |
-
"""Extracts text from PDF files."""
|
| 55 |
text = ""
|
| 56 |
for pdf_path in pdf_files:
|
| 57 |
with open(pdf_path, "rb") as pdf_file:
|
|
@@ -61,7 +45,6 @@ def get_text_from_pdf(pdf_files):
|
|
| 61 |
return text
|
| 62 |
|
| 63 |
def read_text_from_files(file_paths):
|
| 64 |
-
"""Reads text content from TXT files."""
|
| 65 |
text = ""
|
| 66 |
for file_path in file_paths:
|
| 67 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as file:
|
|
@@ -69,7 +52,6 @@ def read_text_from_files(file_paths):
|
|
| 69 |
return text
|
| 70 |
|
| 71 |
def get_text_from_csv(csv_files):
|
| 72 |
-
"""Extracts text from CSV files."""
|
| 73 |
text = ""
|
| 74 |
for csv_path in csv_files:
|
| 75 |
df = pd.read_csv(csv_path)
|
|
@@ -77,7 +59,6 @@ def get_text_from_csv(csv_files):
|
|
| 77 |
return text
|
| 78 |
|
| 79 |
def get_text_from_docx(docx_files):
|
| 80 |
-
"""Extracts text from DOCX files."""
|
| 81 |
text = ""
|
| 82 |
for docx_path in docx_files:
|
| 83 |
doc = Document(docx_path)
|
|
@@ -86,18 +67,16 @@ def get_text_from_docx(docx_files):
|
|
| 86 |
return text
|
| 87 |
|
| 88 |
def get_text_from_ipynb(ipynb_files):
|
| 89 |
-
"""Extracts text from Jupyter Notebook (.ipynb) files."""
|
| 90 |
text = ""
|
| 91 |
for ipynb_path in ipynb_files:
|
| 92 |
with open(ipynb_path, "r", encoding="utf-8", errors="ignore") as file:
|
| 93 |
content = json.load(file)
|
| 94 |
for cell in content.get("cells", []):
|
| 95 |
-
if cell.get("cell_type")
|
| 96 |
text += "\n".join(cell.get("source", [])) + "\n"
|
| 97 |
return text
|
| 98 |
|
| 99 |
def combine_text_from_files(extracted_files):
|
| 100 |
-
"""Combines text from all extracted files."""
|
| 101 |
text = (
|
| 102 |
get_text_from_pdf(extracted_files["pdf"]) +
|
| 103 |
read_text_from_files(extracted_files["txt"]) +
|
|
@@ -108,34 +87,21 @@ def combine_text_from_files(extracted_files):
|
|
| 108 |
return text
|
| 109 |
|
| 110 |
def generate_response(question, text):
|
| 111 |
-
"""Uses
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
client = openai.Client(api_key=api_key)
|
| 116 |
-
response = client.chat.completions.create(
|
| 117 |
-
model="gpt-3.5-turbo",
|
| 118 |
-
messages=[
|
| 119 |
-
{"role": "system", "content": "You are a data analytics assistant. Answer the question based on the provided document content."},
|
| 120 |
-
{"role": "user", "content": f"{question}\n\nBased on the following document content:\n{text[:3000]}"} # Limit to 3000 characters to avoid excessive token usage
|
| 121 |
-
]
|
| 122 |
-
)
|
| 123 |
-
return response.choices[0].message.content.strip()
|
| 124 |
|
| 125 |
def chatbot_interface(question):
|
| 126 |
folder_path = "New_Data_Analytics/"
|
| 127 |
extracted_files = extract_files_from_folder(folder_path)
|
| 128 |
-
|
| 129 |
text = combine_text_from_files(extracted_files)
|
| 130 |
|
| 131 |
-
print("Final extracted text for chatbot processing:", text[:500]) # Debugging log (First 500 chars)
|
| 132 |
-
|
| 133 |
if not text.strip():
|
| 134 |
-
return "
|
| 135 |
|
| 136 |
return generate_response(question, text)
|
| 137 |
|
| 138 |
-
# Gradio interface
|
| 139 |
demo = gr.Interface(
|
| 140 |
fn=chatbot_interface,
|
| 141 |
inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."),
|
|
|
|
| 2 |
import os
|
| 3 |
import PyPDF2
|
| 4 |
import pandas as pd
|
|
|
|
| 5 |
import docx
|
| 6 |
import json
|
| 7 |
+
import requests
|
| 8 |
from docx import Document
|
|
|
|
| 9 |
from langchain_community.vectorstores import FAISS
|
|
|
|
| 10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 11 |
+
from transformers import pipeline
|
| 12 |
|
| 13 |
+
# Configurar Hugging Face API Token
|
| 14 |
+
HF_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
|
| 15 |
+
|
| 16 |
+
# Carregar o modelo Mistral 7B gratuitamente do Hugging Face
|
| 17 |
+
chatbot_pipeline = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.1", token=HF_API_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def extract_files_from_folder(folder_path):
|
| 20 |
+
"""Scans a folder for PDF, TXT, CSV, DOCX, and IPYNB files."""
|
| 21 |
extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": [], "ipynb": []}
|
| 22 |
|
| 23 |
+
for root, _, files in os.walk(folder_path):
|
|
|
|
|
|
|
| 24 |
for file_name in files:
|
| 25 |
file_path = os.path.join(root, file_name)
|
|
|
|
| 26 |
if file_name.endswith(".pdf"):
|
| 27 |
extracted_files["pdf"].append(file_path)
|
| 28 |
elif file_name.endswith(".txt"):
|
|
|
|
| 33 |
extracted_files["docx"].append(file_path)
|
| 34 |
elif file_name.endswith(".ipynb"):
|
| 35 |
extracted_files["ipynb"].append(file_path)
|
|
|
|
|
|
|
| 36 |
return extracted_files
|
| 37 |
|
| 38 |
def get_text_from_pdf(pdf_files):
|
|
|
|
| 39 |
text = ""
|
| 40 |
for pdf_path in pdf_files:
|
| 41 |
with open(pdf_path, "rb") as pdf_file:
|
|
|
|
| 45 |
return text
|
| 46 |
|
| 47 |
def read_text_from_files(file_paths):
|
|
|
|
| 48 |
text = ""
|
| 49 |
for file_path in file_paths:
|
| 50 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as file:
|
|
|
|
| 52 |
return text
|
| 53 |
|
| 54 |
def get_text_from_csv(csv_files):
|
|
|
|
| 55 |
text = ""
|
| 56 |
for csv_path in csv_files:
|
| 57 |
df = pd.read_csv(csv_path)
|
|
|
|
| 59 |
return text
|
| 60 |
|
| 61 |
def get_text_from_docx(docx_files):
|
|
|
|
| 62 |
text = ""
|
| 63 |
for docx_path in docx_files:
|
| 64 |
doc = Document(docx_path)
|
|
|
|
| 67 |
return text
|
| 68 |
|
| 69 |
def get_text_from_ipynb(ipynb_files):
|
|
|
|
| 70 |
text = ""
|
| 71 |
for ipynb_path in ipynb_files:
|
| 72 |
with open(ipynb_path, "r", encoding="utf-8", errors="ignore") as file:
|
| 73 |
content = json.load(file)
|
| 74 |
for cell in content.get("cells", []):
|
| 75 |
+
if cell.get("cell_type") in ["markdown", "code"]:
|
| 76 |
text += "\n".join(cell.get("source", [])) + "\n"
|
| 77 |
return text
|
| 78 |
|
| 79 |
def combine_text_from_files(extracted_files):
|
|
|
|
| 80 |
text = (
|
| 81 |
get_text_from_pdf(extracted_files["pdf"]) +
|
| 82 |
read_text_from_files(extracted_files["txt"]) +
|
|
|
|
| 87 |
return text
|
| 88 |
|
| 89 |
def generate_response(question, text):
|
| 90 |
+
"""Uses the Mistral 7B model to answer questions based on extracted text."""
|
| 91 |
+
prompt = f"Question: {question}\nBased on the following document content:\n{text[:3000]}" # Limite de 3000 caracteres
|
| 92 |
+
response = chatbot_pipeline(prompt, max_length=500, truncation=True)[0]['generated_text']
|
| 93 |
+
return response.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
def chatbot_interface(question):
|
| 96 |
folder_path = "New_Data_Analytics/"
|
| 97 |
extracted_files = extract_files_from_folder(folder_path)
|
|
|
|
| 98 |
text = combine_text_from_files(extracted_files)
|
| 99 |
|
|
|
|
|
|
|
| 100 |
if not text.strip():
|
| 101 |
+
return "No valid files found. Please upload supported file types."
|
| 102 |
|
| 103 |
return generate_response(question, text)
|
| 104 |
|
|
|
|
| 105 |
demo = gr.Interface(
|
| 106 |
fn=chatbot_interface,
|
| 107 |
inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."),
|