Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import PyPDF2 | |
import pandas as pd | |
import openai | |
import docx | |
import requests | |
import json | |
from docx import Document | |
from langchain_community.embeddings import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.llms import OpenAI | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
def detect_language(text): | |
"""Detects the language of the input text using OpenAI.""" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "Detect the language of this text."}, | |
{"role": "user", "content": text} | |
] | |
) | |
return response["choices"][0]["message"]["content"].strip() | |
# Set up OpenAI API key (replace with your key) | |
openai.api_key = "YOUR_OPENAI_API_KEY" | |
def extract_files_from_folder(folder_path): | |
"""Scans a folder and its subfolders for PDF, TXT, CSV, DOCX, and IPYNB files.""" | |
extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": [], "ipynb": []} | |
print(f"Scanning folder: {folder_path}") | |
for root, subdirs, files in os.walk(folder_path): | |
print(f"Checking folder: {root}") # Debugging log for subfolders | |
for file_name in files: | |
file_path = os.path.join(root, file_name) | |
print(f"Found file: {file_path}") | |
if file_name.endswith(".pdf"): | |
extracted_files["pdf"].append(file_path) | |
elif file_name.endswith(".txt"): | |
extracted_files["txt"].append(file_path) | |
elif file_name.endswith(".csv"): | |
extracted_files["csv"].append(file_path) | |
elif file_name.endswith(".docx"): | |
extracted_files["docx"].append(file_path) | |
elif file_name.endswith(".ipynb"): | |
extracted_files["ipynb"].append(file_path) | |
print("Files found:", extracted_files) # Debugging log | |
return extracted_files | |
def get_text_from_pdf(pdf_files): | |
"""Extracts text from PDF files.""" | |
text = "" | |
for pdf_path in pdf_files: | |
with open(pdf_path, "rb") as pdf_file: | |
reader = PyPDF2.PdfReader(pdf_file) | |
for page in reader.pages: | |
text += page.extract_text() + "\n" | |
return text | |
def read_text_from_files(file_paths): | |
"""Reads text content from TXT files.""" | |
text = "" | |
for file_path in file_paths: | |
with open(file_path, "r", encoding="utf-8", errors="ignore") as file: | |
text += file.read() + "\n" | |
return text | |
def get_text_from_csv(csv_files): | |
"""Extracts text from CSV files.""" | |
text = "" | |
for csv_path in csv_files: | |
df = pd.read_csv(csv_path) | |
text += df.to_string() + "\n" | |
return text | |
def get_text_from_docx(docx_files): | |
"""Extracts text from DOCX files.""" | |
text = "" | |
for docx_path in docx_files: | |
doc = Document(docx_path) | |
for para in doc.paragraphs: | |
text += para.text + "\n" | |
return text | |
def get_text_from_ipynb(ipynb_files): | |
"""Extracts text from Jupyter Notebook (.ipynb) files.""" | |
text = "" | |
for ipynb_path in ipynb_files: | |
with open(ipynb_path, "r", encoding="utf-8", errors="ignore") as file: | |
content = json.load(file) | |
for cell in content.get("cells", []): | |
if cell.get("cell_type") == "markdown" or cell.get("cell_type") == "code": | |
text += "\n".join(cell.get("source", [])) + "\n" | |
return text | |
def combine_text_from_files(extracted_files): | |
"""Combines text from all extracted files.""" | |
text = ( | |
get_text_from_pdf(extracted_files["pdf"]) + | |
read_text_from_files(extracted_files["txt"]) + | |
get_text_from_csv(extracted_files["csv"]) + | |
get_text_from_docx(extracted_files["docx"]) + | |
get_text_from_ipynb(extracted_files["ipynb"]) | |
) | |
return text | |
def generate_response(question, text): | |
"""Uses OpenAI to answer a question based on extracted text.""" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a data analytics assistant. Answer the question based on the provided document content."}, | |
{"role": "user", "content": f"{question}\n\nBased on the following document content:\n{text[:3000]}"} # Limit to 3000 characters to avoid excessive token usage | |
] | |
) | |
return response["choices"][0]["message"]["content"].strip() | |
def chatbot_interface(question): | |
folder_path = "New_Data_Analytics/" | |
extracted_files = extract_files_from_folder(folder_path) | |
text = combine_text_from_files(extracted_files) | |
print("Final extracted text for chatbot processing:", text[:500]) # Debugging log (First 500 chars) | |
if not text.strip(): | |
return "The folder does not contain valid PDF, TXT, CSV, DOCX, or IPYNB files. Please upload supported file types." | |
return generate_response(question, text) | |
# Gradio interface | |
demo = gr.Interface( | |
fn=chatbot_interface, | |
inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."), | |
outputs=gr.Textbox(label="Answer") | |
) | |
demo.launch() | |