Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import PyPDF2 | |
import pandas as pd | |
import openai | |
from langchain_community.embeddings import OpenAIEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.llms import OpenAI | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
def detect_language(text): | |
"""Detects the language of the input text using OpenAI.""" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "Detect the language of this text."}, | |
{"role": "user", "content": text} | |
] | |
) | |
return response["choices"][0]["message"]["content"].strip() | |
# Set up OpenAI API key (replace with your key) | |
openai.api_key = "YOUR_OPENAI_API_KEY" | |
def extract_files_from_folder(folder_path): | |
"""Scans a folder and its subfolders for PDF, TXT, CSV, and DOCX files.""" | |
extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": []} | |
for root, _, files in os.walk(folder_path): | |
for file_name in files: | |
file_path = os.path.join(root, file_name) | |
if file_name.endswith(".pdf"): | |
extracted_files["pdf"].append(file_path) | |
elif file_name.endswith(".txt"): | |
extracted_files["txt"].append(file_path) | |
elif file_name.endswith(".csv"): | |
extracted_files["csv"].append(file_path) | |
elif file_name.endswith(".docx"): | |
extracted_files["docx"].append(file_path) | |
return extracted_files | |
def read_text_from_files(file_paths): | |
"""Reads text content from a list of files.""" | |
text = "" | |
for file_path in file_paths: | |
with open(file_path, "r", encoding="utf-8", errors="ignore") as file: | |
text += file.read() + "\n" | |
return text | |
def get_text_from_pdf(pdf_files): | |
text = "" | |
for pdf_path in pdf_files: | |
with open(pdf_path, "rb") as pdf_file: | |
reader = PyPDF2.PdfReader(pdf_file) | |
for page in reader.pages: | |
text += page.extract_text() + "\n" | |
return text | |
def get_text_from_csv(csv_files): | |
text = "" | |
for csv_path in csv_files: | |
df = pd.read_csv(csv_path) | |
text += df.to_string() + "\n" | |
return text | |
def create_vector_database(text): | |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
texts = splitter.split_text(text) | |
embeddings = OpenAIEmbeddings() | |
vector_db = FAISS.from_texts(texts, embeddings) | |
return vector_db | |
def correct_exercises(text): | |
"""Uses OpenAI to correct and complete exercises found in the documents.""" | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "Analyze the text and complete or correct any incomplete exercises."}, | |
{"role": "user", "content": text} | |
] | |
) | |
return response["choices"][0]["message"]["content"].strip() | |
def get_answer(question, vector_db, corrected_exercises): | |
retriever = vector_db.as_retriever() | |
docs = retriever.get_relevant_documents(question) | |
if not docs: | |
return "I could not find the answer in the documents. Do you want me to search external sources?" | |
context = "\n".join([doc.page_content for doc in docs]) | |
language = detect_language(question) | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents to answer questions. Also, use the corrected exercises if relevant."}, | |
{"role": "user", "content": question + "\n\nBased on the following document content:\n" + context + "\n\nCorrected Exercises:\n" + corrected_exercises} | |
] | |
) | |
return response["choices"][0]["message"]["content"] | |
def chatbot_interface(question): | |
folder_path = "/mnt/data/Data Analitics/" | |
extracted_files = extract_files_from_folder(folder_path) | |
text = get_text_from_pdf(extracted_files["pdf"]) + read_text_from_files(extracted_files["txt"]) + get_text_from_csv(extracted_files["csv"]) | |
if not text: | |
return "The folder does not contain valid PDF, TXT, CSV, or DOCX files. Please upload supported file types." | |
corrected_exercises = correct_exercises(text) | |
vector_db = create_vector_database(text) | |
return get_answer(question, vector_db, corrected_exercises) | |
# Gradio interface | |
demo = gr.Interface( | |
fn=chatbot_interface, | |
inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."), | |
outputs=gr.Textbox(label="Answer") | |
) | |
demo.launch() | |