Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import PyPDF2 | |
| import pandas as pd | |
| import openai | |
| from langchain_community.embeddings import OpenAIEmbeddings | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.llms import OpenAI | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| def detect_language(text): | |
| """Detects the language of the input text using OpenAI.""" | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[ | |
| {"role": "system", "content": "Detect the language of this text."}, | |
| {"role": "user", "content": text} | |
| ] | |
| ) | |
| return response["choices"][0]["message"]["content"].strip() | |
| # Set up OpenAI API key (replace with your key) | |
| openai.api_key = "YOUR_OPENAI_API_KEY" | |
| def extract_files_from_folder(folder_path): | |
| """Scans a folder and its subfolders for PDF, TXT, CSV, and DOCX files.""" | |
| extracted_files = {"pdf": [], "txt": [], "csv": [], "docx": []} | |
| for root, _, files in os.walk(folder_path): | |
| for file_name in files: | |
| file_path = os.path.join(root, file_name) | |
| if file_name.endswith(".pdf"): | |
| extracted_files["pdf"].append(file_path) | |
| elif file_name.endswith(".txt"): | |
| extracted_files["txt"].append(file_path) | |
| elif file_name.endswith(".csv"): | |
| extracted_files["csv"].append(file_path) | |
| elif file_name.endswith(".docx"): | |
| extracted_files["docx"].append(file_path) | |
| return extracted_files | |
| def read_text_from_files(file_paths): | |
| """Reads text content from a list of files.""" | |
| text = "" | |
| for file_path in file_paths: | |
| with open(file_path, "r", encoding="utf-8", errors="ignore") as file: | |
| text += file.read() + "\n" | |
| return text | |
| def get_text_from_pdf(pdf_files): | |
| text = "" | |
| for pdf_path in pdf_files: | |
| with open(pdf_path, "rb") as pdf_file: | |
| reader = PyPDF2.PdfReader(pdf_file) | |
| for page in reader.pages: | |
| text += page.extract_text() + "\n" | |
| return text | |
| def get_text_from_csv(csv_files): | |
| text = "" | |
| for csv_path in csv_files: | |
| df = pd.read_csv(csv_path) | |
| text += df.to_string() + "\n" | |
| return text | |
| def create_vector_database(text): | |
| splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
| texts = splitter.split_text(text) | |
| embeddings = OpenAIEmbeddings() | |
| vector_db = FAISS.from_texts(texts, embeddings) | |
| return vector_db | |
| def correct_exercises(text): | |
| """Uses OpenAI to correct and complete exercises found in the documents.""" | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[ | |
| {"role": "system", "content": "Analyze the text and complete or correct any incomplete exercises."}, | |
| {"role": "user", "content": text} | |
| ] | |
| ) | |
| return response["choices"][0]["message"]["content"].strip() | |
| def get_answer(question, vector_db, corrected_exercises): | |
| retriever = vector_db.as_retriever() | |
| docs = retriever.get_relevant_documents(question) | |
| if not docs: | |
| return "I could not find the answer in the documents. Do you want me to search external sources?" | |
| context = "\n".join([doc.page_content for doc in docs]) | |
| language = detect_language(question) | |
| response = openai.ChatCompletion.create( | |
| model="gpt-3.5-turbo", | |
| messages=[ | |
| {"role": "system", "content": f"You are a Data Analytics assistant. Answer in {language}. Use the documents to answer questions. Also, use the corrected exercises if relevant."}, | |
| {"role": "user", "content": question + "\n\nBased on the following document content:\n" + context + "\n\nCorrected Exercises:\n" + corrected_exercises} | |
| ] | |
| ) | |
| return response["choices"][0]["message"]["content"] | |
| def chatbot_interface(question): | |
| folder_path = "/mnt/data/Data Analitics/" | |
| extracted_files = extract_files_from_folder(folder_path) | |
| text = get_text_from_pdf(extracted_files["pdf"]) + read_text_from_files(extracted_files["txt"]) + get_text_from_csv(extracted_files["csv"]) | |
| if not text: | |
| return "The folder does not contain valid PDF, TXT, CSV, or DOCX files. Please upload supported file types." | |
| corrected_exercises = correct_exercises(text) | |
| vector_db = create_vector_database(text) | |
| return get_answer(question, vector_db, corrected_exercises) | |
| # Gradio interface | |
| demo = gr.Interface( | |
| fn=chatbot_interface, | |
| inputs=gr.Textbox(label="Ask a question", placeholder="Type your question here..."), | |
| outputs=gr.Textbox(label="Answer") | |
| ) | |
| demo.launch() | |