File size: 3,870 Bytes
c1c5806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>.container { width:85% !important; }</style>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import display, HTML\n",
    "display(HTML(\"<style>.container { width:85% !important; }</style>\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "SyntaxError",
     "evalue": "(unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \\UXXXXXXXX escape (403486649.py, line 4)",
     "output_type": "error",
     "traceback": [
      "\u001b[1;36m  Cell \u001b[1;32mIn[1], line 4\u001b[1;36m\u001b[0m\n\u001b[1;33m    df = pd.read_csv(\"C:\\Users\\Rafael\\Documents\\DataScience\\Data Analitics\\Week 3\\TU257-Lab2-1-Automated-Data-Profiling.ipynb\")\u001b[0m\n\u001b[1;37m                     ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \\UXXXXXXXX escape\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "\n",
    "#Change this next command to the location of train.csv on your Computer\n",
    "df = pd.read_csv(\"C:\\Users\\Rafael\\Documents\\DataScience\\Data Analitics\\Week 3\\TU257-Lab2-1-Automated-Data-Profiling.ipynb\")\n",
    "#df = pd.read_csv(\"C:\\Studies\\TU257\\DataAnalytics\\Week2\\train.csv\")\n",
    "df.head(8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df2 = df.iloc[:,[1,2,4,5,6,7,8,10,11]]\n",
    "df2.head(8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df2.describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df2.describe().transpose()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Make sure to install 'ydata_profiling' library before running the following\n",
    "#see Lab Notes\n",
    "\n",
    "from ydata_profiling import ProfileReport\n",
    "\n",
    "profile = ProfileReport(df2, title=\"Profiling Report\")\n",
    "profile"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Can you save the Data Profile Report to a file?\n",
    "#Check the package Github site for examples (link to this is in the Lab Notes)\n",
    "#  https://github.com/ydataai/ydata-profiling\n",
    "# Scroll to the bottom of the main GitHub page for examples of saving the report\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Enter the code here\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### See lots more examples of using this library/package for analysing datasets on the Github page. Scroll to bottom of main page to get the links"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}