File size: 12,838 Bytes
567bb77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### TU257-Lab4-Demo2-Decion-Trees  and more\n",
    "\n",
    "This notebook contains two more examples of Classification. This time it is using Decision Trees.\n",
    "\n",
    "There are some Exercises later in this notebook. These ask you to develop a RandomForest and \n",
    "XGBoost models.  These are done in a similar manner to creating a Decision Tree model.\n",
    "\n",
    "Final exercise is to compare the results from all the models to see which one would you recommend using.\n",
    "This recommendation should be based on the data and the results generated by testing the model\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from matplotlib import pyplot as plt\n",
    "from sklearn import datasets\n",
    "from sklearn.tree import DecisionTreeClassifier \n",
    "from sklearn import tree\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load the iris dataset\n",
    "from sklearn.datasets import load_iris\n",
    "iris = load_iris()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "iris"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "X = iris.data\n",
    "y = iris.target"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Fit the classifier with default hyper-parameters\n",
    "clf = DecisionTreeClassifier(random_state=1234)\n",
    "model = clf.fit(X, y)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_representation = tree.export_text(clf)\n",
    "print(text_representation)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "target_name=['0','1']\n",
    "fig = plt.figure(figsize=(25,20))\n",
    "_ = tree.plot_tree(clf, \n",
    "                   feature_names=iris.feature_names,  \n",
    "                   class_names=iris.target_names,\n",
    "                   filled=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig.savefig(\"decistion_tree.png\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "colnames=['Age', 'WorkClass', 'Fnlwgt', 'Education', 'Edu_Num', 'MaritalStatus', 'Occupation', 'Relationship', 'Race', 'Sex', 'CapitalGain', 'CapitalLoss', 'HrPerWk', 'Native', 'Target'] "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "#Load in the dataset\n",
    "df = pd.read_csv('C:\\\\Users\\\\Rafael\\\\Documents\\\\DataScience\\\\Data Analitics\\\\week5\\\\adult.csv', names=colnames, header=None)\n",
    "df.head(10)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.isnull().values.any()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print (\"Rows     : \" ,df.shape[0])\n",
    "print (\"Columns  : \" ,df.shape[1])\n",
    "print (\"\\nFeatures : \\n\" ,df.columns.tolist())\n",
    "print (\"\\nMissing values :  \", df.isnull().sum().values.sum())\n",
    "print (\"\\nUnique values :  \\n\",df.nunique())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.info()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Numerical feature of summary/description \n",
    "df.describe()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# checking \"?\" values, how many are there in the whole dataset\n",
    "df_missing = (df=='?').sum()\n",
    "df_missing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn import preprocessing\n",
    "\n",
    "# encode categorical variables using label Encoder\n",
    "\n",
    "# select all categorical variables\n",
    "df_categorical = df.select_dtypes(include=['object'])\n",
    "df_categorical.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# apply label encoder to df_categorical\n",
    "le = preprocessing.LabelEncoder()\n",
    "df_categorical = df_categorical.apply(le.fit_transform)\n",
    "df_categorical.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Next, Concatenate df_categorical dataframe with original df (dataframe)\n",
    "\n",
    "# first, Drop earlier duplicate columns which had categorical values\n",
    "df = df.drop(df_categorical.columns,axis=1)\n",
    "df = pd.concat([df,df_categorical],axis=1)\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "corr_matrix=df.corr()\n",
    "corr_matrix"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import seaborn as sn\n",
    "#import matplotlib.pyplot as plt\n",
    "\n",
    "fig = plt.subplots(figsize=(17,14))\n",
    "sn.heatmap(corr_matrix, annot=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df['Target'].value_counts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import train_test_split\n",
    "\n",
    "# Putting independent variables/features to X\n",
    "X = df.drop('Target',axis=1)\n",
    "\n",
    "# Putting response/dependent variable/feature to y\n",
    "y = df['Target']\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Splitting the data into train and test\n",
    "X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.30,random_state=99)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing decision tree classifier from sklearn library\n",
    "from sklearn.tree import DecisionTreeClassifier\n",
    "\n",
    "# Fitting the decision tree with default hyperparameters, apart from\n",
    "# max_depth which is 5 so that we can plot and read the tree.\n",
    "dt_default = DecisionTreeClassifier(max_depth=5)\n",
    "dt_default.fit(X_train,y_train)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_representation = tree.export_text(dt_default)\n",
    "print(text_representation)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "target_names=['0','1']\n",
    "feature_names=['Age', 'WorkClass', 'Fnlwgt', 'Education', 'Edu_Num', 'MaritalStatus', 'Occupation', 'Relationship', 'Race', 'Sex', 'CapitalGain', 'CapitalLoss', 'HrPerWk', 'Native']\n",
    "fig = plt.figure(figsize=(20,18))\n",
    "_ = tree.plot_tree(dt_default, filled=True, proportion=True, fontsize=10, feature_names=feature_names, class_names=target_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig = plt.figure(figsize=(20,18))\n",
    "_ = tree.plot_tree(dt_default, filled=True, proportion=True, fontsize=10, max_depth=2, feature_names=feature_names, class_names=target_names)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Importing classification report and confusion matrix from sklearn metrics\n",
    "from sklearn.metrics import classification_report,confusion_matrix,accuracy_score\n",
    "\n",
    "# making predictions\n",
    "y_pred_default = dt_default.predict(X_test)\n",
    "\n",
    "# Printing classifier report after prediction\n",
    "print(classification_report(y_test,y_pred_default))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Exercise: See previous example for creating a Confusion matrix.  Create a confusion matrix for th results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(confusion_matrix(y_test,y_pred_default))\n",
    "print(accuracy_score(y_test,y_pred_default))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(pd.crosstab(pd.Series(y_test), pd.Series(y_pred_default), rownames=['Actual'], colnames=['Predicted'], margins=True))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Exercise: Create a model using X_train, y_train, X_test, y_test, for the following algorithms\n",
    "#            - RandomForest\n",
    "#            - XGBoost\n",
    "#\n",
    "# See shell code below, modify, and complete the code for each algorithm\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Shell code for RandomForest\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
    "\n",
    "rf_default = RandomForestClassifier(max_depth=5)\n",
    "rf_default.fit(X_train,y_train)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# making predictions\n",
    "y_pred_rf_default = rf_default.predict(X_test)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Shell code for XGBoost"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Import library -> you might need to install this ->  pip3 install xgboost\n",
    "from xgboost import XGBClassifier\n",
    "\n",
    "xgb_default=XGBClassifier(n_estimators=100)\n",
    "\n",
    "xgb_default.fit(X_train, y_train)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred = xgb_default.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Exercise: Compare the results from each algorithm for this dataset (Naive Bayes, Decision Tree, RandomForest, XGBoost)\n",
    "#\n",
    "#Exercise: Which algorithm gives the best outcome?  \n",
    "#             - Which algorithm would you recommend using?"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}