File size: 56,751 Bytes
567bb77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "TU258 - Lab 2-2 - Data Exploration\n",
    "\n",
    "This lab gives an example of using Pandas dataframes for analysing data\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "#import pandas\n",
    "import pandas as pd\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "#reading a CSV File into a Panda\n",
    "videoReview = pd.read_csv(r\"C:\\\\Users\\\\Rafael\\\\Documents\\\\DataScience\\\\Data Analitics\\\\Week 3\\\\Video_Games_Sales_as_at_22_Dec_2016.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "# print first 3 rows\n",
      "                Name Platform  Year_of_Release     Genre Publisher  NA_Sales  \\\n",
      "0         Wii Sports      Wii           2006.0    Sports  Nintendo     41.36   \n",
      "1  Super Mario Bros.      NES           1985.0  Platform  Nintendo     29.08   \n",
      "2     Mario Kart Wii      Wii           2008.0    Racing  Nintendo     15.68   \n",
      "\n",
      "   EU_Sales  JP_Sales  Other_Sales  Global_Sales  Critic_Score  Critic_Count  \\\n",
      "0     28.96      3.77         8.45         82.53          76.0          51.0   \n",
      "1      3.58      6.81         0.77         40.24           NaN           NaN   \n",
      "2     12.76      3.79         3.29         35.52          82.0          73.0   \n",
      "\n",
      "  User_Score  User_Count Developer Rating  \n",
      "0          8       322.0  Nintendo      E  \n",
      "1        NaN         NaN       NaN    NaN  \n",
      "2        8.3       709.0  Nintendo      E  \n"
     ]
    }
   ],
   "source": [
    "print('# print first 3 rows')\n",
    "print(videoReview[:3])\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Name</th>\n",
       "      <th>Platform</th>\n",
       "      <th>Year_of_Release</th>\n",
       "      <th>Genre</th>\n",
       "      <th>Publisher</th>\n",
       "      <th>NA_Sales</th>\n",
       "      <th>EU_Sales</th>\n",
       "      <th>JP_Sales</th>\n",
       "      <th>Other_Sales</th>\n",
       "      <th>Global_Sales</th>\n",
       "      <th>Critic_Score</th>\n",
       "      <th>Critic_Count</th>\n",
       "      <th>User_Score</th>\n",
       "      <th>User_Count</th>\n",
       "      <th>Developer</th>\n",
       "      <th>Rating</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Wii Sports</td>\n",
       "      <td>Wii</td>\n",
       "      <td>2006.0</td>\n",
       "      <td>Sports</td>\n",
       "      <td>Nintendo</td>\n",
       "      <td>41.36</td>\n",
       "      <td>28.96</td>\n",
       "      <td>3.77</td>\n",
       "      <td>8.45</td>\n",
       "      <td>82.53</td>\n",
       "      <td>76.0</td>\n",
       "      <td>51.0</td>\n",
       "      <td>8</td>\n",
       "      <td>322.0</td>\n",
       "      <td>Nintendo</td>\n",
       "      <td>E</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Super Mario Bros.</td>\n",
       "      <td>NES</td>\n",
       "      <td>1985.0</td>\n",
       "      <td>Platform</td>\n",
       "      <td>Nintendo</td>\n",
       "      <td>29.08</td>\n",
       "      <td>3.58</td>\n",
       "      <td>6.81</td>\n",
       "      <td>0.77</td>\n",
       "      <td>40.24</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Mario Kart Wii</td>\n",
       "      <td>Wii</td>\n",
       "      <td>2008.0</td>\n",
       "      <td>Racing</td>\n",
       "      <td>Nintendo</td>\n",
       "      <td>15.68</td>\n",
       "      <td>12.76</td>\n",
       "      <td>3.79</td>\n",
       "      <td>3.29</td>\n",
       "      <td>35.52</td>\n",
       "      <td>82.0</td>\n",
       "      <td>73.0</td>\n",
       "      <td>8.3</td>\n",
       "      <td>709.0</td>\n",
       "      <td>Nintendo</td>\n",
       "      <td>E</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                Name Platform  Year_of_Release     Genre Publisher  NA_Sales  \\\n",
       "0         Wii Sports      Wii           2006.0    Sports  Nintendo     41.36   \n",
       "1  Super Mario Bros.      NES           1985.0  Platform  Nintendo     29.08   \n",
       "2     Mario Kart Wii      Wii           2008.0    Racing  Nintendo     15.68   \n",
       "\n",
       "   EU_Sales  JP_Sales  Other_Sales  Global_Sales  Critic_Score  Critic_Count  \\\n",
       "0     28.96      3.77         8.45         82.53          76.0          51.0   \n",
       "1      3.58      6.81         0.77         40.24           NaN           NaN   \n",
       "2     12.76      3.79         3.29         35.52          82.0          73.0   \n",
       "\n",
       "  User_Score  User_Count Developer Rating  \n",
       "0          8       322.0  Nintendo      E  \n",
       "1        NaN         NaN       NaN    NaN  \n",
       "2        8.3       709.0  Nintendo      E  "
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "videoReview.head(3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "# print columns\n",
      "0                           Wii Sports\n",
      "1                    Super Mario Bros.\n",
      "2                       Mario Kart Wii\n",
      "3                    Wii Sports Resort\n",
      "4             Pokemon Red/Pokemon Blue\n",
      "                     ...              \n",
      "16714    Samurai Warriors: Sanada Maru\n",
      "16715                 LMA Manager 2007\n",
      "16716          Haitaka no Psychedelica\n",
      "16717                 Spirits & Spells\n",
      "16718              Winning Post 8 2016\n",
      "Name: Name, Length: 16719, dtype: object\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('# print columns')\n",
    "print(videoReview['Name'])\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0                           Wii Sports\n",
       "1                    Super Mario Bros.\n",
       "2                       Mario Kart Wii\n",
       "3                    Wii Sports Resort\n",
       "4             Pokemon Red/Pokemon Blue\n",
       "                     ...              \n",
       "16714    Samurai Warriors: Sanada Maru\n",
       "16715                 LMA Manager 2007\n",
       "16716          Haitaka no Psychedelica\n",
       "16717                 Spirits & Spells\n",
       "16718              Winning Post 8 2016\n",
       "Name: Name, Length: 16719, dtype: object"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "videoReview['Name']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "# print columns, first 5 rows\n",
      "0                  Wii Sports\n",
      "1           Super Mario Bros.\n",
      "2              Mario Kart Wii\n",
      "3           Wii Sports Resort\n",
      "4    Pokemon Red/Pokemon Blue\n",
      "Name: Name, dtype: object\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('# print columns, first 5 rows')\n",
    "print(videoReview['Name'][:5])\n",
    "\n",
    "#videoReview['Name'].head(5)\n",
    "#videoReview['Name'].tail(5)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "# Platform #\n",
      "Platform\n",
      "PS2     2161\n",
      "DS      2152\n",
      "PS3     1331\n",
      "Wii     1320\n",
      "X360    1262\n",
      "PSP     1209\n",
      "PS      1197\n",
      "PC       974\n",
      "XB       824\n",
      "GBA      822\n",
      "GC       556\n",
      "3DS      520\n",
      "PSV      432\n",
      "PS4      393\n",
      "N64      319\n",
      "XOne     247\n",
      "SNES     239\n",
      "SAT      173\n",
      "WiiU     147\n",
      "2600     133\n",
      "NES       98\n",
      "GB        98\n",
      "DC        52\n",
      "GEN       29\n",
      "NG        12\n",
      "SCD        6\n",
      "WS         6\n",
      "3DO        3\n",
      "TG16       2\n",
      "GG         1\n",
      "PCFX       1\n",
      "Name: count, dtype: int64\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('# Platform #')\n",
    "print(videoReview['Platform'].value_counts())\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "#shape\n",
      "Number of rows =  16719\n",
      "Number of columns =  16\n",
      "Shape =  (16719, 16)\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('#shape')\n",
    "print('Number of rows = ', videoReview.shape[0])\n",
    "print('Number of columns = ', videoReview.shape[1])\n",
    "print('Shape = ', videoReview.shape)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "# Name #\n",
      "Name\n",
      "Need for Speed: Most Wanted                         12\n",
      "FIFA 14                                              9\n",
      "Ratatouille                                          9\n",
      "LEGO Marvel Super Heroes                             9\n",
      "Madden NFL 07                                        9\n",
      "                                                    ..\n",
      "Jewels of the Tropical Lost Island                   1\n",
      "Sherlock Holmes and the Mystery of Osborne House     1\n",
      "The King of Fighters '95 (CD)                        1\n",
      "Megamind: Mega Team Unite                            1\n",
      "Haitaka no Psychedelica                              1\n",
      "Name: count, Length: 11562, dtype: int64\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('# Name #')\n",
    "print(videoReview['Name'].value_counts())\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "#head\n",
      "                       Name Platform  Year_of_Release         Genre Publisher  \\\n",
      "0                Wii Sports      Wii           2006.0        Sports  Nintendo   \n",
      "1         Super Mario Bros.      NES           1985.0      Platform  Nintendo   \n",
      "2            Mario Kart Wii      Wii           2008.0        Racing  Nintendo   \n",
      "3         Wii Sports Resort      Wii           2009.0        Sports  Nintendo   \n",
      "4  Pokemon Red/Pokemon Blue       GB           1996.0  Role-Playing  Nintendo   \n",
      "\n",
      "   NA_Sales  EU_Sales  JP_Sales  Other_Sales  Global_Sales  Critic_Score  \\\n",
      "0     41.36     28.96      3.77         8.45         82.53          76.0   \n",
      "1     29.08      3.58      6.81         0.77         40.24           NaN   \n",
      "2     15.68     12.76      3.79         3.29         35.52          82.0   \n",
      "3     15.61     10.93      3.28         2.95         32.77          80.0   \n",
      "4     11.27      8.89     10.22         1.00         31.37           NaN   \n",
      "\n",
      "   Critic_Count User_Score  User_Count Developer Rating  \n",
      "0          51.0          8       322.0  Nintendo      E  \n",
      "1           NaN        NaN         NaN       NaN    NaN  \n",
      "2          73.0        8.3       709.0  Nintendo      E  \n",
      "3          73.0          8       192.0  Nintendo      E  \n",
      "4           NaN        NaN         NaN       NaN    NaN  \n",
      "                       Name Platform  Year_of_Release         Genre Publisher  \\\n",
      "0                Wii Sports      Wii           2006.0        Sports  Nintendo   \n",
      "1         Super Mario Bros.      NES           1985.0      Platform  Nintendo   \n",
      "2            Mario Kart Wii      Wii           2008.0        Racing  Nintendo   \n",
      "3         Wii Sports Resort      Wii           2009.0        Sports  Nintendo   \n",
      "4  Pokemon Red/Pokemon Blue       GB           1996.0  Role-Playing  Nintendo   \n",
      "5                    Tetris       GB           1989.0        Puzzle  Nintendo   \n",
      "6     New Super Mario Bros.       DS           2006.0      Platform  Nintendo   \n",
      "7                  Wii Play      Wii           2006.0          Misc  Nintendo   \n",
      "\n",
      "   NA_Sales  EU_Sales  JP_Sales  Other_Sales  Global_Sales  Critic_Score  \\\n",
      "0     41.36     28.96      3.77         8.45         82.53          76.0   \n",
      "1     29.08      3.58      6.81         0.77         40.24           NaN   \n",
      "2     15.68     12.76      3.79         3.29         35.52          82.0   \n",
      "3     15.61     10.93      3.28         2.95         32.77          80.0   \n",
      "4     11.27      8.89     10.22         1.00         31.37           NaN   \n",
      "5     23.20      2.26      4.22         0.58         30.26           NaN   \n",
      "6     11.28      9.14      6.50         2.88         29.80          89.0   \n",
      "7     13.96      9.18      2.93         2.84         28.92          58.0   \n",
      "\n",
      "   Critic_Count User_Score  User_Count Developer Rating  \n",
      "0          51.0          8       322.0  Nintendo      E  \n",
      "1           NaN        NaN         NaN       NaN    NaN  \n",
      "2          73.0        8.3       709.0  Nintendo      E  \n",
      "3          73.0          8       192.0  Nintendo      E  \n",
      "4           NaN        NaN         NaN       NaN    NaN  \n",
      "5           NaN        NaN         NaN       NaN    NaN  \n",
      "6          65.0        8.5       431.0  Nintendo      E  \n",
      "7          41.0        6.6       129.0  Nintendo      E  \n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('#head')\n",
    "print(videoReview.head())\n",
    "print(videoReview.head(8))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "#tail\n",
      "                                Name Platform  Year_of_Release       Genre  \\\n",
      "16714  Samurai Warriors: Sanada Maru      PS3           2016.0      Action   \n",
      "16715               LMA Manager 2007     X360           2006.0      Sports   \n",
      "16716        Haitaka no Psychedelica      PSV           2016.0   Adventure   \n",
      "16717               Spirits & Spells      GBA           2003.0    Platform   \n",
      "16718            Winning Post 8 2016      PSV           2016.0  Simulation   \n",
      "\n",
      "          Publisher  NA_Sales  EU_Sales  JP_Sales  Other_Sales  Global_Sales  \\\n",
      "16714    Tecmo Koei      0.00      0.00      0.01          0.0          0.01   \n",
      "16715   Codemasters      0.00      0.01      0.00          0.0          0.01   \n",
      "16716  Idea Factory      0.00      0.00      0.01          0.0          0.01   \n",
      "16717       Wanadoo      0.01      0.00      0.00          0.0          0.01   \n",
      "16718    Tecmo Koei      0.00      0.00      0.01          0.0          0.01   \n",
      "\n",
      "       Critic_Score  Critic_Count User_Score  User_Count Developer Rating  \n",
      "16714           NaN           NaN        NaN         NaN       NaN    NaN  \n",
      "16715           NaN           NaN        NaN         NaN       NaN    NaN  \n",
      "16716           NaN           NaN        NaN         NaN       NaN    NaN  \n",
      "16717           NaN           NaN        NaN         NaN       NaN    NaN  \n",
      "16718           NaN           NaN        NaN         NaN       NaN    NaN  \n",
      "                                                   Name Platform  \\\n",
      "16711                                  Aiyoku no Eustia      PSV   \n",
      "16712                Woody Woodpecker in Crazy Castle 5      GBA   \n",
      "16713  SCORE International Baja 1000: The Official Game      PS2   \n",
      "16714                     Samurai Warriors: Sanada Maru      PS3   \n",
      "16715                                  LMA Manager 2007     X360   \n",
      "16716                           Haitaka no Psychedelica      PSV   \n",
      "16717                                  Spirits & Spells      GBA   \n",
      "16718                               Winning Post 8 2016      PSV   \n",
      "\n",
      "       Year_of_Release       Genre        Publisher  NA_Sales  EU_Sales  \\\n",
      "16711           2014.0        Misc  dramatic create      0.00      0.00   \n",
      "16712           2002.0    Platform            Kemco      0.01      0.00   \n",
      "16713           2008.0      Racing       Activision      0.00      0.00   \n",
      "16714           2016.0      Action       Tecmo Koei      0.00      0.00   \n",
      "16715           2006.0      Sports      Codemasters      0.00      0.01   \n",
      "16716           2016.0   Adventure     Idea Factory      0.00      0.00   \n",
      "16717           2003.0    Platform          Wanadoo      0.01      0.00   \n",
      "16718           2016.0  Simulation       Tecmo Koei      0.00      0.00   \n",
      "\n",
      "       JP_Sales  Other_Sales  Global_Sales  Critic_Score  Critic_Count  \\\n",
      "16711      0.01          0.0          0.01           NaN           NaN   \n",
      "16712      0.00          0.0          0.01           NaN           NaN   \n",
      "16713      0.00          0.0          0.01           NaN           NaN   \n",
      "16714      0.01          0.0          0.01           NaN           NaN   \n",
      "16715      0.00          0.0          0.01           NaN           NaN   \n",
      "16716      0.01          0.0          0.01           NaN           NaN   \n",
      "16717      0.00          0.0          0.01           NaN           NaN   \n",
      "16718      0.01          0.0          0.01           NaN           NaN   \n",
      "\n",
      "      User_Score  User_Count Developer Rating  \n",
      "16711        NaN         NaN       NaN    NaN  \n",
      "16712        NaN         NaN       NaN    NaN  \n",
      "16713        NaN         NaN       NaN    NaN  \n",
      "16714        NaN         NaN       NaN    NaN  \n",
      "16715        NaN         NaN       NaN    NaN  \n",
      "16716        NaN         NaN       NaN    NaN  \n",
      "16717        NaN         NaN       NaN    NaN  \n",
      "16718        NaN         NaN       NaN    NaN  \n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('#tail')\n",
    "print(videoReview.tail())\n",
    "print(videoReview.tail(8))\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "#Describe\n",
      "       Year_of_Release      NA_Sales      EU_Sales      JP_Sales  \\\n",
      "count     16450.000000  16719.000000  16719.000000  16719.000000   \n",
      "mean       2006.487356      0.263330      0.145025      0.077602   \n",
      "std           5.878995      0.813514      0.503283      0.308818   \n",
      "min        1980.000000      0.000000      0.000000      0.000000   \n",
      "25%        2003.000000      0.000000      0.000000      0.000000   \n",
      "50%        2007.000000      0.080000      0.020000      0.000000   \n",
      "75%        2010.000000      0.240000      0.110000      0.040000   \n",
      "max        2020.000000     41.360000     28.960000     10.220000   \n",
      "\n",
      "        Other_Sales  Global_Sales  Critic_Score  Critic_Count    User_Count  \n",
      "count  16719.000000  16719.000000   8137.000000   8137.000000   7590.000000  \n",
      "mean       0.047332      0.533543     68.967679     26.360821    162.229908  \n",
      "std        0.186710      1.547935     13.938165     18.980495    561.282326  \n",
      "min        0.000000      0.010000     13.000000      3.000000      4.000000  \n",
      "25%        0.000000      0.060000     60.000000     12.000000     10.000000  \n",
      "50%        0.010000      0.170000     71.000000     21.000000     24.000000  \n",
      "75%        0.030000      0.470000     79.000000     36.000000     81.000000  \n",
      "max       10.570000     82.530000     98.000000    113.000000  10665.000000  \n",
      "count     16719\n",
      "unique       31\n",
      "top         PS2\n",
      "freq       2161\n",
      "Name: Platform, dtype: object\n",
      "count    16450.000000\n",
      "mean      2006.487356\n",
      "std          5.878995\n",
      "min       1980.000000\n",
      "25%       2003.000000\n",
      "50%       2007.000000\n",
      "75%       2010.000000\n",
      "max       2020.000000\n",
      "Name: Year_of_Release, dtype: float64\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('#Describe')\n",
    "print(videoReview.describe()) # calculates measures of central tendency\n",
    "print(videoReview['Platform'].describe())\n",
    "print(videoReview['Year_of_Release'].describe())\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "#info\n",
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 16719 entries, 0 to 16718\n",
      "Data columns (total 16 columns):\n",
      " #   Column           Non-Null Count  Dtype  \n",
      "---  ------           --------------  -----  \n",
      " 0   Name             16717 non-null  object \n",
      " 1   Platform         16719 non-null  object \n",
      " 2   Year_of_Release  16450 non-null  float64\n",
      " 3   Genre            16717 non-null  object \n",
      " 4   Publisher        16665 non-null  object \n",
      " 5   NA_Sales         16719 non-null  float64\n",
      " 6   EU_Sales         16719 non-null  float64\n",
      " 7   JP_Sales         16719 non-null  float64\n",
      " 8   Other_Sales      16719 non-null  float64\n",
      " 9   Global_Sales     16719 non-null  float64\n",
      " 10  Critic_Score     8137 non-null   float64\n",
      " 11  Critic_Count     8137 non-null   float64\n",
      " 12  User_Score       10015 non-null  object \n",
      " 13  User_Count       7590 non-null   float64\n",
      " 14  Developer        10096 non-null  object \n",
      " 15  Rating           9950 non-null   object \n",
      "dtypes: float64(9), object(7)\n",
      "memory usage: 2.0+ MB\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('#info')\n",
    "print(videoReview.info()) # memory footprint and datatypes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "Transpose - Describe\n",
      "                   count         mean         std      min      25%      50%  \\\n",
      "Year_of_Release  16450.0  2006.487356    5.878995  1980.00  2003.00  2007.00   \n",
      "NA_Sales         16719.0     0.263330    0.813514     0.00     0.00     0.08   \n",
      "EU_Sales         16719.0     0.145025    0.503283     0.00     0.00     0.02   \n",
      "JP_Sales         16719.0     0.077602    0.308818     0.00     0.00     0.00   \n",
      "Other_Sales      16719.0     0.047332    0.186710     0.00     0.00     0.01   \n",
      "Global_Sales     16719.0     0.533543    1.547935     0.01     0.06     0.17   \n",
      "Critic_Score      8137.0    68.967679   13.938165    13.00    60.00    71.00   \n",
      "Critic_Count      8137.0    26.360821   18.980495     3.00    12.00    21.00   \n",
      "User_Count        7590.0   162.229908  561.282326     4.00    10.00    24.00   \n",
      "\n",
      "                     75%       max  \n",
      "Year_of_Release  2010.00   2020.00  \n",
      "NA_Sales            0.24     41.36  \n",
      "EU_Sales            0.11     28.96  \n",
      "JP_Sales            0.04     10.22  \n",
      "Other_Sales         0.03     10.57  \n",
      "Global_Sales        0.47     82.53  \n",
      "Critic_Score       79.00     98.00  \n",
      "Critic_Count       36.00    113.00  \n",
      "User_Count         81.00  10665.00  \n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('Transpose - Describe')\n",
    "print(videoReview.describe().transpose())\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "Iterate some rows from DF\n",
      "#### Printing row ####\n",
      "Wii Sports\n",
      "#### Printing row ####\n",
      "Super Mario Bros.\n",
      "#### Printing row ####\n",
      "Mario Kart Wii\n",
      "#### Printing row ####\n",
      "Wii Sports Resort\n",
      "#### Printing row ####\n",
      "Pokemon Red/Pokemon Blue\n",
      "#### Printing row ####\n",
      "Tetris\n",
      "#### Printing row ####\n",
      "New Super Mario Bros.\n",
      "#### Printing row ####\n",
      "Wii Play\n",
      "#### Printing row ####\n",
      "New Super Mario Bros. Wii\n"
     ]
    }
   ],
   "source": [
    "print('----------')\n",
    "print('Iterate some rows from DF')\n",
    "for i, row in videoReview[:9].iterrows():\n",
    " print('#### Printing row ####')\n",
    " print(row['Name'])\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "Group by Year, Platform by Count : \n",
      "                          Name  Genre  Publisher  NA_Sales  EU_Sales  \\\n",
      "Year_of_Release Platform                                               \n",
      "1980.0          2600         9      9          9         9         9   \n",
      "1981.0          2600        46     46         46        46        46   \n",
      "1982.0          2600        36     36         36        36        36   \n",
      "1983.0          2600        11     11         11        11        11   \n",
      "                NES          6      6          6         6         6   \n",
      "...                        ...    ...        ...       ...       ...   \n",
      "2016.0          X360        13     13         13        13        13   \n",
      "                XOne        87     87         87        87        87   \n",
      "2017.0          PS4          1      1          1         1         1   \n",
      "                PSV          2      2          2         2         2   \n",
      "2020.0          DS           1      1          1         1         1   \n",
      "\n",
      "                          JP_Sales  Other_Sales  Global_Sales  Critic_Score  \\\n",
      "Year_of_Release Platform                                                      \n",
      "1980.0          2600             9            9             9             0   \n",
      "1981.0          2600            46           46            46             0   \n",
      "1982.0          2600            36           36            36             0   \n",
      "1983.0          2600            11           11            11             0   \n",
      "                NES              6            6             6             0   \n",
      "...                            ...          ...           ...           ...   \n",
      "2016.0          X360            13           13            13             0   \n",
      "                XOne            87           87            87            60   \n",
      "2017.0          PS4              1            1             1             0   \n",
      "                PSV              2            2             2             0   \n",
      "2020.0          DS               1            1             1             0   \n",
      "\n",
      "                          Critic_Count  User_Score  User_Count  Developer  \\\n",
      "Year_of_Release Platform                                                    \n",
      "1980.0          2600                 0           0           0          0   \n",
      "1981.0          2600                 0           0           0          0   \n",
      "1982.0          2600                 0           0           0          0   \n",
      "1983.0          2600                 0           0           0          0   \n",
      "                NES                  0           0           0          0   \n",
      "...                                ...         ...         ...        ...   \n",
      "2016.0          X360                 0          12           7         12   \n",
      "                XOne                60          74          66         74   \n",
      "2017.0          PS4                  0           0           0          0   \n",
      "                PSV                  0           0           0          0   \n",
      "2020.0          DS                   0           1           0          1   \n",
      "\n",
      "                          Rating  \n",
      "Year_of_Release Platform          \n",
      "1980.0          2600           0  \n",
      "1981.0          2600           0  \n",
      "1982.0          2600           0  \n",
      "1983.0          2600           0  \n",
      "                NES            0  \n",
      "...                          ...  \n",
      "2016.0          X360          12  \n",
      "                XOne          71  \n",
      "2017.0          PS4            0  \n",
      "                PSV            0  \n",
      "2020.0          DS             1  \n",
      "\n",
      "[241 rows x 14 columns]\n"
     ]
    }
   ],
   "source": [
    "#Subsetting and ordering Pandas\n",
    "print('----------')\n",
    "print('Group by Year, Platform by Count : ')\n",
    "print(videoReview.groupby(['Year_of_Release','Platform']).count())\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Group by : for Year=2016 group by Platform and count Global Sales\n",
      "Platform\n",
      "3DS     15.14\n",
      "PC       5.27\n",
      "PS3      3.58\n",
      "PS4     69.29\n",
      "PSV      4.27\n",
      "Wii      0.18\n",
      "WiiU     4.58\n",
      "X360     1.52\n",
      "XOne    26.27\n",
      "Name: Global_Sales, dtype: float64\n"
     ]
    }
   ],
   "source": [
    "print('Group by : for Year=2016 group by Platform and count Global Sales')\n",
    "print(videoReview[videoReview.Year_of_Release==2016.0].groupby('Platform')['Global_Sales'].sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "Sorting and Ordering\n",
      "                         Name Platform  Year_of_Release     Genre Publisher  \\\n",
      "15               Wii Fit Plus      Wii           2009.0    Sports  Nintendo   \n",
      "8   New Super Mario Bros. Wii      Wii           2009.0  Platform  Nintendo   \n",
      "7                    Wii Play      Wii           2006.0      Misc  Nintendo   \n",
      "3           Wii Sports Resort      Wii           2009.0    Sports  Nintendo   \n",
      "2              Mario Kart Wii      Wii           2008.0    Racing  Nintendo   \n",
      "0                  Wii Sports      Wii           2006.0    Sports  Nintendo   \n",
      "\n",
      "    NA_Sales  EU_Sales  JP_Sales  Other_Sales  Global_Sales  Critic_Score  \\\n",
      "15      9.01      8.49      2.53         1.77         21.79          80.0   \n",
      "8      14.44      6.94      4.70         2.24         28.32          87.0   \n",
      "7      13.96      9.18      2.93         2.84         28.92          58.0   \n",
      "3      15.61     10.93      3.28         2.95         32.77          80.0   \n",
      "2      15.68     12.76      3.79         3.29         35.52          82.0   \n",
      "0      41.36     28.96      3.77         8.45         82.53          76.0   \n",
      "\n",
      "    Critic_Count User_Score  User_Count Developer Rating  \n",
      "15          33.0        7.4        52.0  Nintendo      E  \n",
      "8           80.0        8.4       594.0  Nintendo      E  \n",
      "7           41.0        6.6       129.0  Nintendo      E  \n",
      "3           73.0          8       192.0  Nintendo      E  \n",
      "2           73.0        8.3       709.0  Nintendo      E  \n",
      "0           51.0          8       322.0  Nintendo      E  \n"
     ]
    }
   ],
   "source": [
    "#More Panda functions - Sorting & Ordering\n",
    "print('----------')\n",
    "print('Sorting and Ordering')\n",
    "df = videoReview[(videoReview.Platform=='Wii') & (videoReview.NA_Sales>9)]\n",
    "print(df.sort_values('Global_Sales', ascending=True))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Writing a Panda to a CSV file\n",
    "df.to_csv('/Users/Rafael/video_games_wii.csv', sep=',')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "   Unnamed: 0                       Name Platform  Year_of_Release     Genre  \\\n",
      "0           0                 Wii Sports      Wii           2006.0    Sports   \n",
      "1           2             Mario Kart Wii      Wii           2008.0    Racing   \n",
      "2           3          Wii Sports Resort      Wii           2009.0    Sports   \n",
      "3           7                   Wii Play      Wii           2006.0      Misc   \n",
      "4           8  New Super Mario Bros. Wii      Wii           2009.0  Platform   \n",
      "\n",
      "  Publisher  NA_Sales  EU_Sales  JP_Sales  Other_Sales  Global_Sales  \\\n",
      "0  Nintendo     41.36     28.96      3.77         8.45         82.53   \n",
      "1  Nintendo     15.68     12.76      3.79         3.29         35.52   \n",
      "2  Nintendo     15.61     10.93      3.28         2.95         32.77   \n",
      "3  Nintendo     13.96      9.18      2.93         2.84         28.92   \n",
      "4  Nintendo     14.44      6.94      4.70         2.24         28.32   \n",
      "\n",
      "   Critic_Score  Critic_Count  User_Score  User_Count Developer Rating  \n",
      "0          76.0          51.0         8.0       322.0  Nintendo      E  \n",
      "1          82.0          73.0         8.3       709.0  Nintendo      E  \n",
      "2          80.0          73.0         8.0       192.0  Nintendo      E  \n",
      "3          58.0          41.0         6.6       129.0  Nintendo      E  \n",
      "4          87.0          80.0         8.4       594.0  Nintendo      E  \n"
     ]
    }
   ],
   "source": [
    "#Go inspect the CSV file created.\n",
    "#Is it what you expected?\n",
    "#Could the output be formatted differently?\n",
    "#If so, look up the Pandas 'to_csv' function to see what you can change\n",
    "df_loaded = pd.read_csv('/Users/Rafael/video_games_wii.csv', sep=',');\n",
    "print(df_loaded.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'Get' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[41], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m Get\u001b[38;5;241m-\u001b[39mContent \u001b[38;5;241m/\u001b[39mUsers\u001b[38;5;241m/\u001b[39mRafael\u001b[38;5;241m/\u001b[39mvideo_games_wii\u001b[38;5;241m.\u001b[39mcsv\n",
      "\u001b[1;31mNameError\u001b[0m: name 'Get' is not defined"
     ]
    }
   ],
   "source": [
    "Get-Content /Users/Rafael/video_games_wii.csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.to_csv('/Users/Rafael/video_games_wii.csv', sep=',', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "----------\n",
      "Plotting - Histogram\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<Axes: ylabel='Frequency'>"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGdCAYAAADzOWwgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAt9ElEQVR4nO3de3TU9Z3/8deQm5AmIwGScQ4RWY0UDLgKbQirBQUiSozC2QWNHVGpYpFLCixK9Rxw1+VaA3qyVbwUvKDxUrCe1abEQmORO5IKLCIicpEMQQ2TgJBA8vn94Y/vOgQhDEkmk8/zcc6c0/nOe77zfudTzcvPfGfiMsYYAQAAWKxNuBsAAAAINwIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB60eFuIFLU1dXpwIEDSkhIkMvlCnc7AACgAYwxqqqqktfrVZs2P74PRCBqoAMHDig1NTXcbQAAgBDs27dPnTt3/tHHCUQNlJCQIOn7H2hiYmKYuwEAAA1RWVmp1NRU5/f4jyEQNdCpt8kSExMJRAAARJhzXe7CRdUAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1osOdwMAAHtc9sh74W7hvH05e2i4W0AzYIcIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYLayCaMWOGXC5X0M3j8TiPG2M0Y8YMeb1etW3bVgMGDNC2bduCzlFdXa3x48erY8eOio+PV05Ojvbv3x9UU1FRIZ/PJ7fbLbfbLZ/Pp8OHDzfHiAAAIAKEfYfoqquuUllZmXPbsmWL89jcuXOVn5+vgoICbdiwQR6PR4MHD1ZVVZVTk5eXp2XLlqmwsFCrVq3SkSNHlJ2drdraWqcmNzdXpaWlKioqUlFRkUpLS+Xz+Zp1TgAA0HKF/a/dR0dHB+0KnWKM0YIFC/Too49q+PDhkqSXXnpJKSkpeu211zRmzBgFAgG9+OKLeuWVVzRo0CBJ0quvvqrU1FR98MEHuummm7R9+3YVFRVp7dq1ysjIkCQ9//zzyszM1I4dO9StW7fmGxYAALRIYd8h2rlzp7xer7p27ao77rhDX3zxhSRp9+7d8vv9ysrKcmrj4uLUv39/rV69WpK0adMmnThxIqjG6/UqPT3dqVmzZo3cbrcThiSpb9++crvdTg0AALBbWHeIMjIy9PLLL+vKK6/UwYMH9cQTT6hfv37atm2b/H6/JCklJSXoOSkpKdqzZ48kye/3KzY2Vu3bt69Xc+r5fr9fycnJ9V47OTnZqTmT6upqVVdXO/crKytDGxIAALR4YQ1EN998s/O/e/bsqczMTF1++eV66aWX1LdvX0mSy+UKeo4xpt6x051ec6b6c51n1qxZevzxxxs0BwAAiGxhf8vsh+Lj49WzZ0/t3LnTua7o9F2c8vJyZ9fI4/GopqZGFRUVZ605ePBgvdc6dOhQvd2nH5o2bZoCgYBz27dv3wXNBgAAWq4WFYiqq6u1fft2XXLJJeratas8Ho+Ki4udx2tqalRSUqJ+/fpJknr37q2YmJigmrKyMm3dutWpyczMVCAQ0Pr1652adevWKRAIODVnEhcXp8TExKAbAABoncL6ltmUKVN066236tJLL1V5ebmeeOIJVVZWatSoUXK5XMrLy9PMmTOVlpamtLQ0zZw5U+3atVNubq4kye12a/To0Zo8ebI6dOigpKQkTZkyRT179nQ+dda9e3cNGTJE999/vxYuXChJeuCBB5Sdnc0nzAAAgKQwB6L9+/frzjvv1Ndff61OnTqpb9++Wrt2rbp06SJJmjp1qo4dO6axY8eqoqJCGRkZWr58uRISEpxzzJ8/X9HR0RoxYoSOHTumgQMHavHixYqKinJqlixZogkTJjifRsvJyVFBQUHzDgsAAFoslzHGhLuJSFBZWSm3261AIMDbZwAQosseeS/cLZy3L2cPDXcLuAAN/f3doq4hAgAACAcCEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgvRYTiGbNmiWXy6W8vDznmDFGM2bMkNfrVdu2bTVgwABt27Yt6HnV1dUaP368OnbsqPj4eOXk5Gj//v1BNRUVFfL5fHK73XK73fL5fDp8+HAzTAUAACJBiwhEGzZs0HPPPadevXoFHZ87d67y8/NVUFCgDRs2yOPxaPDgwaqqqnJq8vLytGzZMhUWFmrVqlU6cuSIsrOzVVtb69Tk5uaqtLRURUVFKioqUmlpqXw+X7PNBwAAWrawB6IjR47orrvu0vPPP6/27ds7x40xWrBggR599FENHz5c6enpeumll/Tdd9/ptddekyQFAgG9+OKLevLJJzVo0CBdc801evXVV7VlyxZ98MEHkqTt27erqKhIL7zwgjIzM5WZmannn39e//M//6MdO3aEZWYAANCyhD0QPfTQQxo6dKgGDRoUdHz37t3y+/3KyspyjsXFxal///5avXq1JGnTpk06ceJEUI3X61V6erpTs2bNGrndbmVkZDg1ffv2ldvtdmrOpLq6WpWVlUE3AADQOkWH88ULCwv18ccfa8OGDfUe8/v9kqSUlJSg4ykpKdqzZ49TExsbG7SzdKrm1PP9fr+Sk5PrnT85OdmpOZNZs2bp8ccfP7+BAABARArbDtG+ffs0ceJEvfrqq7rooot+tM7lcgXdN8bUO3a602vOVH+u80ybNk2BQMC57du376yvCQAAIlfYAtGmTZtUXl6u3r17Kzo6WtHR0SopKdHTTz+t6OhoZ2fo9F2c8vJy5zGPx6OamhpVVFSctebgwYP1Xv/QoUP1dp9+KC4uTomJiUE3AADQOoUtEA0cOFBbtmxRaWmpc+vTp4/uuusulZaW6p/+6Z/k8XhUXFzsPKempkYlJSXq16+fJKl3796KiYkJqikrK9PWrVudmszMTAUCAa1fv96pWbdunQKBgFMDAADsFrZriBISEpSenh50LD4+Xh06dHCO5+XlaebMmUpLS1NaWppmzpypdu3aKTc3V5Lkdrs1evRoTZ48WR06dFBSUpKmTJminj17Ohdpd+/eXUOGDNH999+vhQsXSpIeeOABZWdnq1u3bs04MQAAaKnCelH1uUydOlXHjh3T2LFjVVFRoYyMDC1fvlwJCQlOzfz58xUdHa0RI0bo2LFjGjhwoBYvXqyoqCinZsmSJZowYYLzabScnBwVFBQ0+zwAAKBlchljTLibiASVlZVyu90KBAJcTwSgRbjskffC3YIVvpw9NNwt4AI09Pd32L+HCAAAINwIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALBeSIFo9+7djd0HAABA2IQUiK644grdcMMNevXVV3X8+PHG7gkAAKBZhRSI/vGPf+iaa67R5MmT5fF4NGbMGK1fv76xewMAAGgWIQWi9PR05efn66uvvtKiRYvk9/t13XXX6aqrrlJ+fr4OHTrU2H0CAAA0mQu6qDo6OlrDhg3Tm2++qTlz5mjXrl2aMmWKOnfurLvvvltlZWWN1ScAAECTuaBAtHHjRo0dO1aXXHKJ8vPzNWXKFO3atUsrVqzQV199pdtuu62x+gQAAGgy0aE8KT8/X4sWLdKOHTt0yy236OWXX9Ytt9yiNm2+z1ddu3bVwoUL9dOf/rRRmwUAAGgKIQWiZ555Rvfdd5/uvfdeeTyeM9ZceumlevHFFy+oOQAAgOYQUiDauXPnOWtiY2M1atSoUE4PAADQrEK6hmjRokV666236h1/66239NJLL11wUwAAAM0ppEA0e/ZsdezYsd7x5ORkzZw584KbAgAAaE4hBaI9e/aoa9eu9Y536dJFe/fuveCmAAAAmlNIgSg5OVmffPJJveP/+Mc/1KFDhwaf55lnnlGvXr2UmJioxMREZWZm6s9//rPzuDFGM2bMkNfrVdu2bTVgwABt27Yt6BzV1dUaP368OnbsqPj4eOXk5Gj//v1BNRUVFfL5fHK73XK73fL5fDp8+PD5DQ0AAFqtkALRHXfcoQkTJmjlypWqra1VbW2tVqxYoYkTJ+qOO+5o8Hk6d+6s2bNna+PGjdq4caNuvPFG3XbbbU7omTt3rvLz81VQUKANGzbI4/Fo8ODBqqqqcs6Rl5enZcuWqbCwUKtWrdKRI0eUnZ2t2tpapyY3N1elpaUqKipSUVGRSktL5fP5QhkdAAC0Qi5jjDnfJ9XU1Mjn8+mtt95SdPT3H1Srq6vT3XffrWeffVaxsbEhN5SUlKR58+bpvvvuk9frVV5enh5++GFJ3+8GpaSkaM6cORozZowCgYA6deqkV155RSNHjpQkHThwQKmpqXr//fd10003afv27erRo4fWrl2rjIwMSdLatWuVmZmpTz/9VN26dWtQX5WVlXK73QoEAkpMTAx5PgBoLJc98l64W7DCl7OHhrsFXICG/v4OaYcoNjZWb7zxhj799FMtWbJES5cu1a5du/SHP/wh5DBUW1urwsJCHT16VJmZmdq9e7f8fr+ysrKcmri4OPXv31+rV6+WJG3atEknTpwIqvF6vUpPT3dq1qxZI7fb7YQhSerbt6/cbrdTcybV1dWqrKwMugEAgNYppO8hOuXKK6/UlVdeeUENbNmyRZmZmTp+/Lh+8pOfaNmyZerRo4cTVlJSUoLqU1JStGfPHkmS3+9XbGys2rdvX6/G7/c7NcnJyfVeNzk52ak5k1mzZunxxx+/oNkAAEBkCCkQ1dbWavHixfrrX/+q8vJy1dXVBT2+YsWKBp+rW7duKi0t1eHDh/XHP/5Ro0aNUklJifO4y+UKqjfG1Dt2utNrzlR/rvNMmzZNkyZNcu5XVlYqNTX1nPMAAIDIE1IgmjhxohYvXqyhQ4cqPT39nAHlbGJjY3XFFVdIkvr06aMNGzboqaeecq4b8vv9uuSSS5z68vJyZ9fI4/GopqZGFRUVQbtE5eXl6tevn1Nz8ODBeq976NChertPPxQXF6e4uLiQ5wIAAJEjpEBUWFioN998U7fccktj9yNjjKqrq9W1a1d5PB4VFxfrmmuukfT9xdwlJSWaM2eOJKl3796KiYlRcXGxRowYIUkqKyvT1q1bNXfuXElSZmamAoGA1q9fr5///OeSpHXr1ikQCDihCQAA2C2kQPTDXZ0L8dvf/lY333yzUlNTVVVVpcLCQv3tb39TUVGRXC6X8vLyNHPmTKWlpSktLU0zZ85Uu3btlJubK0lyu90aPXq0Jk+erA4dOigpKUlTpkxRz549NWjQIElS9+7dNWTIEN1///1auHChJOmBBx5QdnZ2gz9hBgAAWreQAtHkyZP11FNPqaCg4ILeLjt48KB8Pp/KysrkdrvVq1cvFRUVafDgwZKkqVOn6tixYxo7dqwqKiqUkZGh5cuXKyEhwTnH/PnzFR0drREjRujYsWMaOHCgFi9erKioKKdmyZIlmjBhgvNptJycHBUUFITcNwAAaF1C+h6iYcOGaeXKlUpKStJVV12lmJiYoMeXLl3aaA22FHwPEYCWhu8hah58D1Fka+jv75B2iC6++GINGzYs5OYAAABakpAC0aJFixq7DwAAgLAJ6ZuqJenkyZP64IMPtHDhQudvix04cEBHjhxptOYAAACaQ0g7RHv27NGQIUO0d+9eVVdXa/DgwUpISNDcuXN1/PhxPfvss43dJwAAQJMJaYdo4sSJ6tOnjyoqKtS2bVvn+LBhw/TXv/610ZoDAABoDiHtEK1atUofffRRvT/k2qVLF3311VeN0hgAAEBzCWmHqK6uTrW1tfWO79+/P+g7ggAAACJBSIFo8ODBWrBggXPf5XLpyJEjmj59epP8OQ8AAICmFNJbZvPnz9cNN9ygHj166Pjx48rNzdXOnTvVsWNHvf76643dIwAAQJMKKRB5vV6Vlpbq9ddf18cff6y6ujqNHj1ad911V9BF1gAAAJEgpEAkSW3bttV9992n++67rzH7AQAAaHYhBaKXX375rI/ffffdITUDAAAQDiEFookTJwbdP3HihL777jvFxsaqXbt2BCIAABBRQvqUWUVFRdDtyJEj2rFjh6677jouqgYAABEn5L9ldrq0tDTNnj273u4RAABAS9dogUiSoqKidODAgcY8JQAAQJML6Rqid999N+i+MUZlZWUqKCjQv/zLvzRKYwAAAM0lpEB0++23B913uVzq1KmTbrzxRj355JON0RcAAECzCSkQ1dXVNXYfAAAAYdOo1xABAABEopB2iCZNmtTg2vz8/FBeAgAAoNmEFIg2b96sjz/+WCdPnlS3bt0kSZ999pmioqJ07bXXOnUul6txugQAAGhCIQWiW2+9VQkJCXrppZfUvn17Sd9/WeO9996r66+/XpMnT27UJgEAAJpSSNcQPfnkk5o1a5YThiSpffv2euKJJ/iUGQAAiDghBaLKykodPHiw3vHy8nJVVVVdcFMAAADNKaRANGzYMN177716++23tX//fu3fv19vv/22Ro8ereHDhzd2jwAAAE0qpGuInn32WU2ZMkW//OUvdeLEie9PFB2t0aNHa968eY3aIAAAQFMLKRC1a9dOv//97zVv3jzt2rVLxhhdccUVio+Pb+z+AAAAmtwFfTFjWVmZysrKdOWVVyo+Pl7GmMbqCwAAoNmEFIi++eYbDRw4UFdeeaVuueUWlZWVSZJ+9atf8ZF7AAAQcUIKRL/5zW8UExOjvXv3ql27ds7xkSNHqqioqNGaAwAAaA4hXUO0fPly/eUvf1Hnzp2DjqelpWnPnj2N0hgANKfLHnkv3C0ACKOQdoiOHj0atDN0ytdff624uLgLbgoAAKA5hRSIfvGLX+jll1927rtcLtXV1WnevHm64YYbGq05AACA5hDSW2bz5s3TgAEDtHHjRtXU1Gjq1Knatm2bvv32W3300UeN3SMAAGETiW+nfjl7aLhbiDgh7RD16NFDn3zyiX7+859r8ODBOnr0qIYPH67Nmzfr8ssvb+weAQAAmtR57xCdOHFCWVlZWrhwoR5//PGm6AkAAKBZnfcOUUxMjLZu3SqXy9UU/QAAADS7kN4yu/vuu/Xiiy82di8AAABhEdJF1TU1NXrhhRdUXFysPn361PsbZvn5+Y3SHAAAQHM4r0D0xRdf6LLLLtPWrVt17bXXSpI+++yzoBreSgMAAJHmvAJRWlqaysrKtHLlSknf/6mOp59+WikpKU3SHAAAQHM4r2uITv9r9n/+85919OjRRm0IAACguYV0UfUppwckAACASHRegcjlctW7RohrhgAAQKQ7r2uIjDG65557nD/gevz4cT344IP1PmW2dOnSxusQAACgiZ1XIBo1alTQ/V/+8peN2gwAAEA4nFcgWrRoUVP1AQAAEDYXdFE1AABAa0AgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYL6yBaNasWfrZz36mhIQEJScn6/bbb9eOHTuCaowxmjFjhrxer9q2basBAwZo27ZtQTXV1dUaP368OnbsqPj4eOXk5Gj//v1BNRUVFfL5fHK73XK73fL5fDp8+HBTjwgAACJAWANRSUmJHnroIa1du1bFxcU6efKksrKydPToUadm7ty5ys/PV0FBgTZs2CCPx6PBgwerqqrKqcnLy9OyZctUWFioVatW6ciRI8rOzlZtba1Tk5ubq9LSUhUVFamoqEilpaXy+XzNOi8AAGiZXMYYE+4mTjl06JCSk5NVUlKiX/ziFzLGyOv1Ki8vTw8//LCk73eDUlJSNGfOHI0ZM0aBQECdOnXSK6+8opEjR0qSDhw4oNTUVL3//vu66aabtH37dvXo0UNr165VRkaGJGnt2rXKzMzUp59+qm7dup2zt8rKSrndbgUCASUmJjbdDwFAWFz2yHvhbgFoNF/OHhruFlqMhv7+blHXEAUCAUlSUlKSJGn37t3y+/3KyspyauLi4tS/f3+tXr1akrRp0yadOHEiqMbr9So9Pd2pWbNmjdxutxOGJKlv375yu91Ozemqq6tVWVkZdAMAAK1TiwlExhhNmjRJ1113ndLT0yVJfr9fkpSSkhJUm5KS4jzm9/sVGxur9u3bn7UmOTm53msmJyc7NaebNWuWc72R2+1WamrqhQ0IAABarBYTiMaNG6dPPvlEr7/+er3HXC5X0H1jTL1jpzu95kz1ZzvPtGnTFAgEnNu+ffsaMgYAAIhALSIQjR8/Xu+++65Wrlypzp07O8c9Ho8k1dvFKS8vd3aNPB6PampqVFFRcdaagwcP1nvdQ4cO1dt9OiUuLk6JiYlBNwAA0DqFNRAZYzRu3DgtXbpUK1asUNeuXYMe79q1qzwej4qLi51jNTU1KikpUb9+/SRJvXv3VkxMTFBNWVmZtm7d6tRkZmYqEAho/fr1Ts26desUCAScGgAAYK/ocL74Qw89pNdee01/+tOflJCQ4OwEud1utW3bVi6XS3l5eZo5c6bS0tKUlpammTNnql27dsrNzXVqR48ercmTJ6tDhw5KSkrSlClT1LNnTw0aNEiS1L17dw0ZMkT333+/Fi5cKEl64IEHlJ2d3aBPmAEAgNYtrIHomWeekSQNGDAg6PiiRYt0zz33SJKmTp2qY8eOaezYsaqoqFBGRoaWL1+uhIQEp37+/PmKjo7WiBEjdOzYMQ0cOFCLFy9WVFSUU7NkyRJNmDDB+TRaTk6OCgoKmnZAAAAQEVrU9xC1ZHwPEdC68T1EaE34HqL/E5HfQwQAABAOBCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgvehwNwCg9bnskffC3QIAnBd2iAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYL6yB6MMPP9Stt94qr9crl8uld955J+hxY4xmzJghr9ertm3basCAAdq2bVtQTXV1tcaPH6+OHTsqPj5eOTk52r9/f1BNRUWFfD6f3G633G63fD6fDh8+3MTTAQCASBHWQHT06FFdffXVKigoOOPjc+fOVX5+vgoKCrRhwwZ5PB4NHjxYVVVVTk1eXp6WLVumwsJCrVq1SkeOHFF2drZqa2udmtzcXJWWlqqoqEhFRUUqLS2Vz+dr8vkAAEBkcBljTLibkCSXy6Vly5bp9ttvl/T97pDX61VeXp4efvhhSd/vBqWkpGjOnDkaM2aMAoGAOnXqpFdeeUUjR46UJB04cECpqal6//33ddNNN2n79u3q0aOH1q5dq4yMDEnS2rVrlZmZqU8//VTdunVrUH+VlZVyu90KBAJKTExs/B8A0Ipc9sh74W4BsNqXs4eGu4UWo6G/v1vsNUS7d++W3+9XVlaWcywuLk79+/fX6tWrJUmbNm3SiRMngmq8Xq/S09OdmjVr1sjtdjthSJL69u0rt9vt1JxJdXW1Kisrg24AAKB1arGByO/3S5JSUlKCjqekpDiP+f1+xcbGqn379metSU5Ornf+5ORkp+ZMZs2a5Vxz5Ha7lZqaekHzAACAlqvFBqJTXC5X0H1jTL1jpzu95kz15zrPtGnTFAgEnNu+ffvOs3MAABApWmwg8ng8klRvF6e8vNzZNfJ4PKqpqVFFRcVZaw4ePFjv/IcOHaq3+/RDcXFxSkxMDLoBAIDWqcUGoq5du8rj8ai4uNg5VlNTo5KSEvXr10+S1Lt3b8XExATVlJWVaevWrU5NZmamAoGA1q9f79SsW7dOgUDAqQEAAHaLDueLHzlyRJ9//rlzf/fu3SotLVVSUpIuvfRS5eXlaebMmUpLS1NaWppmzpypdu3aKTc3V5Lkdrs1evRoTZ48WR06dFBSUpKmTJminj17atCgQZKk7t27a8iQIbr//vu1cOFCSdIDDzyg7OzsBn/CDAAAtG5hDUQbN27UDTfc4NyfNGmSJGnUqFFavHixpk6dqmPHjmns2LGqqKhQRkaGli9froSEBOc58+fPV3R0tEaMGKFjx45p4MCBWrx4saKiopyaJUuWaMKECc6n0XJycn70u48AAIB9Wsz3ELV0fA8R0HB8DxEQXnwP0f+J+O8hAgAAaC4EIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYL3ocDcAAAAa12WPvBfuFs7bl7OHhvX12SECAADWIxABAADrEYgAAID1uIYIaOEi8VoAAIg07BABAADrEYgAAID1CEQAAMB6BCIAAGA9AhEAALAegQgAAFiPQAQAAKxHIAIAANYjEAEAAOsRiAAAgPUIRAAAwHoEIgAAYD0CEQAAsB6BCAAAWI9ABAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYLzrcDUC67JH3wt3Cefty9tBwtwAAQKMhEMEqkRg+AQBNj7fMAACA9azaIfr973+vefPmqaysTFdddZUWLFig66+/PtxtRSR2WgAArYk1O0RvvPGG8vLy9Oijj2rz5s26/vrrdfPNN2vv3r3hbg0AAISZNYEoPz9fo0eP1q9+9St1795dCxYsUGpqqp555plwtwYAAMLMirfMampqtGnTJj3yyCNBx7OysrR69eozPqe6ulrV1dXO/UAgIEmqrKxs9P7qqr9r9HMCABBJmuL36w/Pa4w5a50Vgejrr79WbW2tUlJSgo6npKTI7/ef8TmzZs3S448/Xu94ampqk/QIAIDN3Aua9vxVVVVyu90/+rgVgegUl8sVdN8YU+/YKdOmTdOkSZOc+3V1dfr222/VoUOHH31OKCorK5Wamqp9+/YpMTGx0c7bkrT2GZkv8rX2GVv7fFLrn5H5QmeMUVVVlbxe71nrrAhEHTt2VFRUVL3doPLy8nq7RqfExcUpLi4u6NjFF1/cVC0qMTGxVf6f/Ida+4zMF/la+4ytfT6p9c/IfKE5287QKVZcVB0bG6vevXuruLg46HhxcbH69esXpq4AAEBLYcUOkSRNmjRJPp9Pffr0UWZmpp577jnt3btXDz74YLhbAwAAYWZNIBo5cqS++eYb/cd//IfKysqUnp6u999/X126dAlrX3FxcZo+fXq9t+dak9Y+I/NFvtY+Y2ufT2r9MzJf03OZc30ODQAAoJWz4hoiAACAsyEQAQAA6xGIAACA9QhEAADAegSiRvDhhx/q1ltvldfrlcvl0jvvvBP0+MGDB3XPPffI6/WqXbt2GjJkiHbu3BlU4/f75fP55PF4FB8fr2uvvVZvv/12UE1FRYV8Pp/cbrfcbrd8Pp8OHz7cxNM133yXXXaZXC5X0O30vz/XVBpjxl27dmnYsGHq1KmTEhMTNWLECB08eDCoJpLXsCHzhWsNZ82apZ/97GdKSEhQcnKybr/9du3YsSOoxhijGTNmyOv1qm3bthowYIC2bdsWVFNdXa3x48erY8eOio+PV05Ojvbv3x9UE441bM75In0Nn3vuOQ0YMECJiYlyuVxnXJtIXsOGzBeONWyM+b799luNHz9e3bp1U7t27XTppZdqwoQJzt8SPaWp1o9A1AiOHj2qq6++WgUFBfUeM8bo9ttv1xdffKE//elP2rx5s7p06aJBgwbp6NGjTp3P59OOHTv07rvvasuWLRo+fLhGjhypzZs3OzW5ubkqLS1VUVGRioqKVFpaKp/P12rmk+R8LcKp22OPPdbk80kXPuPRo0eVlZUll8ulFStW6KOPPlJNTY1uvfVW1dXVOeeK1DVs6HxSeNawpKREDz30kNauXavi4mKdPHlSWVlZQf8fnDt3rvLz81VQUKANGzbI4/Fo8ODBqqqqcmry8vK0bNkyFRYWatWqVTpy5Iiys7NVW1vr1IRjDZtzPimy1/C7777TkCFD9Nvf/vZHXyuS17Ah80nNv4aNMd+BAwd04MAB/e53v9OWLVu0ePFiFRUVafTo0UGv1WTrZ9CoJJlly5Y593fs2GEkma1btzrHTp48aZKSkszzzz/vHIuPjzcvv/xy0LmSkpLMCy+8YIwx5n//93+NJLN27Vrn8TVr1hhJ5tNPP22iaeprqvmMMaZLly5m/vz5TdZ7Q4Uy41/+8hfTpk0bEwgEnJpvv/3WSDLFxcXGmMhew4bMZ0zLWcPy8nIjyZSUlBhjjKmrqzMej8fMnj3bqTl+/Lhxu93m2WefNcYYc/jwYRMTE2MKCwudmq+++sq0adPGFBUVGWNazho21XzGRPYa/tDKlSuNJFNRURF0PJLX8Id+bD5jWsYaXuh8p7z55psmNjbWnDhxwhjTtOvHDlETq66uliRddNFFzrGoqCjFxsZq1apVzrHrrrtOb7zxhr799lvV1dWpsLBQ1dXVGjBggCRpzZo1crvdysjIcJ7Tt29fud1urV69unmGOYPGmu+UOXPmqEOHDvrnf/5n/dd//ZdqamqaZY6zaciM1dXVcrlcQV8qdtFFF6lNmzZOTSSvYUPmO6UlrOGpLfakpCRJ0u7du+X3+5WVleXUxMXFqX///s7PftOmTTpx4kRQjdfrVXp6ulPTUtawqeY7JVLXsCEieQ3PR7jXsLHmCwQCSkxMVHT0998j3ZTrRyBqYj/96U/VpUsXTZs2TRUVFaqpqdHs2bPl9/tVVlbm1L3xxhs6efKkOnTooLi4OI0ZM0bLli3T5ZdfLun7a3CSk5PrnT85ObneH61tTo01nyRNnDhRhYWFWrlypcaNG6cFCxZo7Nix4RgrSENm7Nu3r+Lj4/Xwww/ru+++09GjR/Xv//7vqqurc2oieQ0bMp/UMtbQGKNJkybpuuuuU3p6uiQ5P9/T/5hzSkqK85jf71dsbKzat29/1ppwr2FTzidF9ho2RCSvYUOFew0ba75vvvlG//mf/6kxY8Y4x5py/az50x3hEhMToz/+8Y8aPXq0kpKSFBUVpUGDBunmm28OqnvsscdUUVGhDz74QB07dtQ777yjf/u3f9Pf//539ezZU5Lkcrnqnd8Yc8bjzaUx5/vNb37j1Pfq1Uvt27fXv/7rvzr/pRMuDZmxU6dOeuutt/TrX/9aTz/9tNq0aaM777xT1157raKiopy6SF3Dhs7XEtZw3Lhx+uSTT+rtXEn1f/4N+dmfXhPuNWzq+VrjGp7rHKGeJ1RNPV+417Ax5qusrNTQoUPVo0cPTZ8+/aznONt5zgeBqBn07t1bpaWlCgQCqqmpUadOnZSRkaE+ffpI+v7TOwUFBdq6dauuuuoqSdLVV1+tv//97/rv//5vPfvss/J4PPU+0SNJhw4dqpe4m1tjzHcmffv2lSR9/vnnYQ1E0rlnlKSsrCzt2rVLX3/9taKjo3XxxRfL4/Goa9eukhTRayide74zae41HD9+vN599119+OGH6ty5s3Pc4/FI+v6/Li+55BLneHl5ufOz93g8qqmpUUVFRdAuSnl5ufr16+fUhHMNm3q+M4mkNWyISF7DUDXnGjbGfFVVVRoyZIh+8pOfaNmyZYqJiQk6T1OtH2+ZNSO3261OnTpp586d2rhxo2677TZJ339qQJLatAlejqioKOcTPJmZmQoEAlq/fr3z+Lp16xQIBM76L7PmdCHzncmpT6D98B+ecPuxGX+oY8eOuvjii7VixQqVl5crJydHUmSv4Q/92Hxn0lxraIzRuHHjtHTpUq1YsaJeSOvatas8Ho+Ki4udYzU1NSopKXF+9r1791ZMTExQTVlZmbZu3erUhGsNm2u+M4mkNWyISF7DUDXHGjbWfJWVlcrKylJsbKzefffdoGsbpSZevwu6JBvGGGOqqqrM5s2bzebNm40kk5+fbzZv3mz27NljjPn+KvmVK1eaXbt2mXfeecd06dLFDB8+3Hl+TU2NueKKK8z1119v1q1bZz7//HPzu9/9zrhcLvPee+85dUOGDDG9evUya9asMWvWrDE9e/Y02dnZrWK+1atXO+f94osvzBtvvGG8Xq/Jyclp8vkaY0ZjjPnDH/5g1qxZYz7//HPzyiuvmKSkJDNp0qSgmkhdw4bMF841/PWvf23cbrf529/+ZsrKypzbd99959TMnj3buN1us3TpUrNlyxZz5513mksuucRUVlY6NQ8++KDp3Lmz+eCDD8zHH39sbrzxRnP11VebkydPOjXhWMPmmq81rGFZWZnZvHmzef75540k8+GHH5rNmzebb775xqmJ5DU813zhWsPGmK+ystJkZGSYnj17ms8//zzoPM3xzyCBqBGc+vjj6bdRo0YZY4x56qmnTOfOnU1MTIy59NJLzWOPPWaqq6uDzvHZZ5+Z4cOHm+TkZNOuXTvTq1eveh9T/+abb8xdd91lEhISTEJCgrnrrrvO+JHLSJxv06ZNJiMjw7jdbnPRRReZbt26menTp5ujR482+XyNNePDDz9sUlJSTExMjElLSzNPPvmkqaurC6qJ5DU813zhXMMzzSbJLFq0yKmpq6sz06dPNx6Px8TFxZlf/OIXZsuWLUHnOXbsmBk3bpxJSkoybdu2NdnZ2Wbv3r1BNeFYw+aarzWs4fTp0895nkhew3PNF641bIz5fuzfU5LM7t27nbqmWj/X/x8EAADAWlxDBAAArEcgAgAA1iMQAQAA6xGIAACA9QhEAADAegQiAABgPQIRAACwHoEIAABYj0AEAACsRyACAADWIxABAADrEYgAAID1/h9D3BrRbVZwuAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "#Creating Graphs for a Panda\n",
    "#plotting\n",
    "print('----------')\n",
    "print('Plotting - Histogram')\n",
    "videoReview['Year_of_Release'].plot(kind='hist')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#If the chart does not appear in the above cell, just go back to that cell and rerun. It should appear now."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Can you create any other plots?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}