File size: 18,073 Bytes
b152010
 
 
 
 
 
 
 
 
2230a38
 
b152010
 
 
 
 
 
 
 
2230a38
 
b152010
 
 
 
 
 
2230a38
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b152010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230a38
b152010
 
 
 
 
 
 
2230a38
 
 
 
b152010
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
from tqdm import tqdm
from deep_translator import GoogleTranslator
from itertools import chain
import copy
from .language_configuration import fix_code_language, INVERTED_LANGUAGES
from .logging_setup import logger
import re
import json
import time
import os
import google.generativeai as genai

TRANSLATION_PROCESS_OPTIONS = [
    "google_translator_batch",
    "google_translator",
    "gpt-3.5-turbo-0125_batch",
    "gpt-3.5-turbo-0125",
    "gpt-4-turbo-preview_batch",
    "gpt-4-turbo-preview",
    "gemini-pro",
    "gemini-pro_batch",
    "disable_translation",
]
DOCS_TRANSLATION_PROCESS_OPTIONS = [
    "google_translator",
    "gpt-3.5-turbo-0125",
    "gpt-4-turbo-preview",
    "gemini-pro",
    "disable_translation",
]


def translate_iterative(segments, target, source=None):
    """
    Translate text segments individually to the specified language.

    Parameters:
    - segments (list): A list of dictionaries with 'text' as a key for
        segment text.
    - target (str): Target language code.
    - source (str, optional): Source language code. Defaults to None.

    Returns:
    - list: Translated text segments in the target language.

    Notes:
    - Translates each segment using Google Translate.

    Example:
    segments = [{'text': 'first segment.'}, {'text': 'second segment.'}]
    translated_segments = translate_iterative(segments, 'es')
    """

    segments_ = copy.deepcopy(segments)

    if (
        not source
    ):
        logger.debug("No source language")
        source = "auto"

    translator = GoogleTranslator(source=source, target=target)

    for line in tqdm(range(len(segments_))):
        text = segments_[line]["text"]
        translated_line = translator.translate(text.strip())
        segments_[line]["text"] = translated_line

    return segments_


def verify_translate(
    segments,
    segments_copy,
    translated_lines,
    target,
    source
):
    """
    Verify integrity and translate segments if lengths match, otherwise
    switch to iterative translation.
    """
    if len(segments) == len(translated_lines):
        for line in range(len(segments_copy)):
            logger.debug(
                f"{segments_copy[line]['text']} >> "
                f"{translated_lines[line].strip()}"
            )
            segments_copy[line]["text"] = translated_lines[
                line].replace("\t", "").replace("\n", "").strip()
        return segments_copy
    else:
        logger.error(
            "The translation failed, switching to google_translate iterative. "
            f"{len(segments), len(translated_lines)}"
        )
        return translate_iterative(segments, target, source)


def translate_batch(segments, target, chunk_size=2000, source=None):
    """
    Translate a batch of text segments into the specified language in chunks,
        respecting the character limit.

    Parameters:
    - segments (list): List of dictionaries with 'text' as a key for segment
        text.
    - target (str): Target language code.
    - chunk_size (int, optional): Maximum character limit for each translation
        chunk (default is 2000; max 5000).
    - source (str, optional): Source language code. Defaults to None.

    Returns:
    - list: Translated text segments in the target language.

    Notes:
    - Splits input segments into chunks respecting the character limit for
        translation.
    - Translates the chunks using Google Translate.
    - If chunked translation fails, switches to iterative translation using
        `translate_iterative()`.

    Example:
    segments = [{'text': 'first segment.'}, {'text': 'second segment.'}]
    translated = translate_batch(segments, 'es', chunk_size=4000, source='en')
    """

    segments_copy = copy.deepcopy(segments)

    if (
        not source
    ):
        logger.debug("No source language")
        source = "auto"

    # Get text
    text_lines = []
    for line in range(len(segments_copy)):
        text = segments_copy[line]["text"].strip()
        text_lines.append(text)

    # chunk limit
    text_merge = []
    actual_chunk = ""
    global_text_list = []
    actual_text_list = []
    for one_line in text_lines:
        one_line = " " if not one_line else one_line
        if (len(actual_chunk) + len(one_line)) <= chunk_size:
            if actual_chunk:
                actual_chunk += " ||||| "
            actual_chunk += one_line
            actual_text_list.append(one_line)
        else:
            text_merge.append(actual_chunk)
            actual_chunk = one_line
            global_text_list.append(actual_text_list)
            actual_text_list = [one_line]
    if actual_chunk:
        text_merge.append(actual_chunk)
        global_text_list.append(actual_text_list)

    # translate chunks
    progress_bar = tqdm(total=len(segments), desc="Translating")
    translator = GoogleTranslator(source=source, target=target)
    split_list = []
    try:
        for text, text_iterable in zip(text_merge, global_text_list):
            translated_line = translator.translate(text.strip())
            split_text = translated_line.split("|||||")
            if len(split_text) == len(text_iterable):
                progress_bar.update(len(split_text))
            else:
                logger.debug(
                    "Chunk fixing iteratively. Len chunk: "
                    f"{len(split_text)}, expected: {len(text_iterable)}"
                )
                split_text = []
                for txt_iter in text_iterable:
                    translated_txt = translator.translate(txt_iter.strip())
                    split_text.append(translated_txt)
                    progress_bar.update(1)
            split_list.append(split_text)
        progress_bar.close()
    except Exception as error:
        progress_bar.close()
        logger.error(str(error))
        logger.warning(
            "The translation in chunks failed, switching to iterative."
            " Related: too many request"
        )  # use proxy or less chunk size
        return translate_iterative(segments, target, source)

    # un chunk
    translated_lines = list(chain.from_iterable(split_list))

    return verify_translate(
        segments, segments_copy, translated_lines, target, source
    )


def call_gpt_translate(
    client,
    model,
    system_prompt,
    user_prompt,
    original_text=None,
    batch_lines=None,
):

    # https://platform.openai.com/docs/guides/text-generation/json-mode
    response = client.chat.completions.create(
        model=model,
        response_format={"type": "json_object"},
        messages=[
          {"role": "system", "content": system_prompt},
          {"role": "user", "content": user_prompt}
        ]
    )
    result = response.choices[0].message.content
    logger.debug(f"Result: {str(result)}")

    try:
        translation = json.loads(result)
    except Exception as error:
        match_result = re.search(r'\{.*?\}', result)
        if match_result:
            logger.error(str(error))
            json_str = match_result.group(0)
            translation = json.loads(json_str)
        else:
            raise error

    # Get valid data
    if batch_lines:
        for conversation in translation.values():
            if isinstance(conversation, dict):
                conversation = list(conversation.values())[0]
            if (
                list(
                    original_text["conversation"][0].values()
                )[0].strip() ==
                list(conversation[0].values())[0].strip()
            ):
                continue
            if len(conversation) == batch_lines:
                break

        fix_conversation_length = []
        for line in conversation:
            for speaker_code, text_tr in line.items():
                fix_conversation_length.append({speaker_code: text_tr})

        logger.debug(f"Data batch: {str(fix_conversation_length)}")
        logger.debug(
            f"Lines Received: {len(fix_conversation_length)},"
            f" expected: {batch_lines}"
        )

        return fix_conversation_length

    else:
        if isinstance(translation, dict):
            translation = list(translation.values())[0]
        if isinstance(translation, list):
            translation = translation[0]
        if isinstance(translation, set):
            translation = list(translation)[0]
        if not isinstance(translation, str):
            raise ValueError(f"No valid response received: {str(translation)}")

        return translation


def gpt_sequential(segments, model, target, source=None):
    from openai import OpenAI

    translated_segments = copy.deepcopy(segments)

    client = OpenAI()
    progress_bar = tqdm(total=len(segments), desc="Translating")

    lang_tg = re.sub(r'\([^)]*\)', '', INVERTED_LANGUAGES[target]).strip()
    lang_sc = ""
    if source:
        lang_sc = re.sub(r'\([^)]*\)', '', INVERTED_LANGUAGES[source]).strip()

    fixed_target = fix_code_language(target)
    fixed_source = fix_code_language(source) if source else "auto"

    system_prompt = "Machine translation designed to output the translated_text JSON."

    for i, line in enumerate(translated_segments):
        text = line["text"].strip()
        start = line["start"]
        user_prompt = f"Translate the following {lang_sc} text into {lang_tg}, write the fully translated text and nothing more:\n{text}"

        time.sleep(0.5)

        try:
            translated_text = call_gpt_translate(
                client,
                model,
                system_prompt,
                user_prompt,
            )

        except Exception as error:
            logger.error(
                f"{str(error)} >> The text of segment {start} "
                "is being corrected with Google Translate"
            )
            translator = GoogleTranslator(
                source=fixed_source, target=fixed_target
            )
            translated_text = translator.translate(text.strip())

        translated_segments[i]["text"] = translated_text.strip()
        progress_bar.update(1)

    progress_bar.close()

    return translated_segments


def gpt_batch(segments, model, target, token_batch_limit=900, source=None):
    from openai import OpenAI
    import tiktoken

    token_batch_limit = max(100, (token_batch_limit - 40) // 2)
    progress_bar = tqdm(total=len(segments), desc="Translating")
    segments_copy = copy.deepcopy(segments)
    encoding = tiktoken.get_encoding("cl100k_base")
    client = OpenAI()

    lang_tg = re.sub(r'\([^)]*\)', '', INVERTED_LANGUAGES[target]).strip()
    lang_sc = ""
    if source:
        lang_sc = re.sub(r'\([^)]*\)', '', INVERTED_LANGUAGES[source]).strip()

    fixed_target = fix_code_language(target)
    fixed_source = fix_code_language(source) if source else "auto"

    name_speaker = "ABCDEFGHIJKL"

    translated_lines = []
    text_data_dict = []
    num_tokens = 0
    count_sk = {char: 0 for char in "ABCDEFGHIJKL"}

    for i, line in enumerate(segments_copy):
        text = line["text"]
        speaker = line["speaker"]
        last_start = line["start"]
        # text_data_dict.append({str(int(speaker[-1])+1): text})
        index_sk = int(speaker[-2:])
        character_sk = name_speaker[index_sk]
        count_sk[character_sk] += 1
        code_sk = character_sk+str(count_sk[character_sk])
        text_data_dict.append({code_sk: text})
        num_tokens += len(encoding.encode(text)) + 7
        if num_tokens >= token_batch_limit or i == len(segments_copy)-1:
            try:
                batch_lines = len(text_data_dict)
                batch_conversation = {"conversation": copy.deepcopy(text_data_dict)}
                # Reset vars
                num_tokens = 0
                text_data_dict = []
                count_sk = {char: 0 for char in "ABCDEFGHIJKL"}
                # Process translation
                # https://arxiv.org/pdf/2309.03409.pdf
                system_prompt = f"Machine translation designed to output the translated_conversation key JSON containing a list of {batch_lines} items."
                user_prompt = f"Translate each of the following text values in conversation{' from' if lang_sc else ''} {lang_sc} to {lang_tg}:\n{batch_conversation}"
                logger.debug(f"Prompt: {str(user_prompt)}")

                conversation = call_gpt_translate(
                    client,
                    model,
                    system_prompt,
                    user_prompt,
                    original_text=batch_conversation,
                    batch_lines=batch_lines,
                )

                if len(conversation) < batch_lines:
                    raise ValueError(
                        "Incomplete result received. Batch lines: "
                        f"{len(conversation)}, expected: {batch_lines}"
                    )

                for i, translated_text in enumerate(conversation):
                    if i+1 > batch_lines:
                        break
                    translated_lines.append(list(translated_text.values())[0])

                progress_bar.update(batch_lines)

            except Exception as error:
                logger.error(str(error))

                first_start = segments_copy[max(0, i-(batch_lines-1))]["start"]
                logger.warning(
                    f"The batch from {first_start} to {last_start} "
                    "failed, is being corrected with Google Translate"
                )

                translator = GoogleTranslator(
                    source=fixed_source,
                    target=fixed_target
                )

                for txt_source in batch_conversation["conversation"]:
                    translated_txt = translator.translate(
                        list(txt_source.values())[0].strip()
                    )
                    translated_lines.append(translated_txt.strip())
                    progress_bar.update(1)

    progress_bar.close()

    return verify_translate(
        segments, segments_copy, translated_lines, fixed_target, fixed_source
    )


def check_gemini_api_key():
    """Check if Gemini API key is set in environment variables."""
    if not os.environ.get("GOOGLE_API_KEY"):
        raise ValueError(
            "Gemini API key not found. Please set the GOOGLE_API_KEY environment variable."
        )

def translate_with_gemini(text, target_lang, source_lang=None):
    """Translate text using Google's Gemini API."""
    check_gemini_api_key()
    genai.configure(api_key=os.environ["GOOGLE_API_KEY"])
    model = genai.GenerativeModel('gemini-pro')
    
    prompt = f"""Translate the following text to {target_lang}. 
    Keep the same tone and style. Preserve any special characters or formatting.
    
    Text to translate: {text}
    """
    if source_lang:
        prompt = f"Translate from {source_lang} to {target_lang}: {text}"
        
    response = model.generate_content(prompt)
    return response.text.strip()

def gemini_sequential(segments, target, source=None):
    """Translate segments sequentially using Gemini."""
    segments_ = copy.deepcopy(segments)
    
    for line in tqdm(range(len(segments_))):
        text = segments_[line]["text"]
        translated_line = translate_with_gemini(text.strip(), target, source)
        segments_[line]["text"] = translated_line
        
    return segments_

def gemini_batch(segments, target, token_batch_limit=1000, source=None):
    """Translate segments in batches using Gemini."""
    segments_ = copy.deepcopy(segments)
    batch_texts = []
    current_batch = []
    current_length = 0
    
    # Group texts into batches
    for segment in segments_:
        text_length = len(segment["text"])
        if current_length + text_length > token_batch_limit:
            batch_texts.append(current_batch)
            current_batch = []
            current_length = 0
        current_batch.append(segment["text"])
        current_length += text_length
    
    if current_batch:
        batch_texts.append(current_batch)
    
    # Translate each batch
    for i, batch in enumerate(tqdm(batch_texts)):
        batch_text = "\n---\n".join(batch)
        translated_batch = translate_with_gemini(batch_text, target, source)
        translated_segments = translated_batch.split("\n---\n")
        
        # Update segments with translations
        start_idx = sum(len(b) for b in batch_texts[:i])
        for j, translation in enumerate(translated_segments):
            segments_[start_idx + j]["text"] = translation.strip()
    
    return segments_

def translate_text(
    segments,
    target,
    translation_process="google_translator_batch",
    chunk_size=4500,
    source=None,
    token_batch_limit=1000,
):
    """Translates text segments using a specified process."""
    match translation_process:
        case "google_translator_batch":
            return translate_batch(
                segments,
                fix_code_language(target),
                chunk_size,
                fix_code_language(source)
            )
        case "google_translator":
            return translate_iterative(
                segments,
                fix_code_language(target),
                fix_code_language(source)
            )
        case model if model in ["gpt-3.5-turbo-0125", "gpt-4-turbo-preview"]:
            return gpt_sequential(segments, model, target, source)
        case model if model in ["gpt-3.5-turbo-0125_batch", "gpt-4-turbo-preview_batch"]:
            return gpt_batch(
                segments,
                translation_process.replace("_batch", ""),
                target,
                token_batch_limit,
                source
            )
        case "gemini-pro":
            return gemini_sequential(segments, target, source)
        case "gemini-pro_batch":
            return gemini_batch(segments, target, token_batch_limit, source)
        case "disable_translation":
            return segments
        case _:
            raise ValueError("No valid translation process")