{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "res_path = '../results'" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "p = \"/home/jovyan/rmt/babilong-leaderboard/data/BABILong NeurIPS24 Figs - leaderboard.csv\"\n", "res_df = pd.read_csv(p)\n", "res_df = res_df[res_df.task.isin(['qa1', 'qa2', 'qa3', 'qa4', 'qa5'])]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "lens = [0, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000, 500000, 1000000, 10000000]\n", "len_names = ['0K', '1K', '2K', '4K', '8K', '16K', '32K', '64K', '128K', '512K', '1M', '10M']\n", "\n", "for model_name in res_df.Model.unique():\n", " model_df = res_df[res_df.Model == model_name]\n", " for i, row in model_df.iterrows():\n", " for l, ln in zip(lens, len_names):\n", " score = row[ln]\n", " # print(score)\n", " if not pd.isna(score):\n", " os.makedirs(os.path.join(res_path, model_name), exist_ok=True)\n", " os.makedirs(os.path.join(res_path, model_name, row.task), exist_ok=True)\n", " path = os.path.join(res_path, model_name, row.task, f'{l}.csv')\n", " df = pd.DataFrame([{'result': score}])\n", " df.to_csv(path, index=False)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 2 }