import streamlit as st import pandas as pd import pickle from utils import create_new_features, normalize, init_new_pred with open('./trained_model.pkl', 'rb') as file: model = pickle.load(file) # Define min and max values from the dictionaries min_dict = { 'bedrooms': 0, 'bathrooms': 0, 'sqft_living': 370, 'sqft_lot': 638, 'floors': 1, 'waterfront': 0, 'view': 0, 'condition': 1, 'sqft_above': 370, 'sqft_basement': 0, 'yr_built': 1900, 'yr_renovated': 0, 'house_age': 0, 'years_since_renovation': 0 } max_dict = { 'bedrooms': 9, 'bathrooms': 8, 'sqft_living': 13540, 'sqft_lot': 1074218, 'floors': 3, 'waterfront': 1, 'view': 4, 'condition': 5, 'sqft_above': 9410, 'sqft_basement': 4820, 'yr_built': 2014, 'yr_renovated': 2014, 'house_age': 114, 'years_since_renovation': 2014 } # Display the predicted price at the top of the app price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}") # Create two columns: one for the city and one for the map col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed # Display city dropdown in the first column with col1: # Placeholder for displaying the predicted price at the top price_placeholder = st.empty() st.subheader('City Selection') city = st.selectbox( 'Select City', ['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue', 'Black Diamond', 'Bothell', 'Burien', 'Carnation', 'Clyde Hill', 'Covington', 'Des Moines', 'Duvall', 'Enumclaw', 'Fall City', 'Federal Way', 'Inglewood-Finn Hill', 'Issaquah', 'Kenmore', 'Kent', 'Kirkland', 'Lake Forest Park', 'Maple Valley', 'Medina', 'Mercer Island', 'Milton', 'Newcastle', 'Normandy Park', 'North Bend', 'Pacific', 'Preston', 'Ravensdale', 'Redmond', 'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline', 'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon', 'Woodinville', 'Yarrow Point'] ) # Create sliders for each item in the dictionaries bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms']) bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms']) sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living']) sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=min_dict['sqft_lot']) floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=min_dict['floors']) waterfront = st.checkbox('Waterfront', value=False) view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=min_dict['view']) condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=min_dict['condition']) sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=min_dict['sqft_above']) sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=min_dict['sqft_basement']) yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=min_dict['yr_built']) yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=min_dict['yr_renovated']) if (bedrooms != min_dict['bedrooms'] or bathrooms != min_dict['bathrooms'] or sqft_living != min_dict['sqft_living'] or sqft_lot != min_dict['sqft_lot'] or floors != min_dict['floors'] or # waterfront != min_dict['waterfront'] or view != min_dict['view'] or condition != min_dict['condition'] or sqft_above != min_dict['sqft_above'] or sqft_basement != min_dict['sqft_basement'] or yr_built != min_dict['yr_built'] or yr_renovated != min_dict['yr_renovated']): new_pred = init_new_pred() new_pred['bedrooms'] = bedrooms new_pred['bathrooms'] = bathrooms new_pred['sqft_living'] = sqft_living new_pred['sqft_lot'] = sqft_lot new_pred['floors'] = floors new_pred['waterfront'] = int(waterfront) new_pred['view'] = view new_pred['condition'] = condition new_pred['sqft_above'] = sqft_above new_pred['sqft_basement'] = sqft_basement new_pred['yr_built'] = yr_built new_pred['yr_renovated'] = yr_renovated new_pred[f'city_{city}'] = 1 # Process the prediction new_pred = pd.DataFrame([new_pred]) new_pred = create_new_features(new_pred) new_pred = normalize(new_pred) # Predict the price predicted_price = model.predict(new_pred) # Display the map in the second column with col2: if () st.subheader('Map') data = pd.DataFrame({ 'latitude': [47.6097, 47.6205, 47.6762], # Example latitudes 'longitude': [-122.3331, -122.3493, -122.3198] # Example longitudes }) st.map(data)