Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,17 +6,6 @@ from utils import create_new_features, normalize, bucketize, init_new_pred
|
|
| 6 |
|
| 7 |
st.set_page_config(layout="wide")
|
| 8 |
|
| 9 |
-
st.markdown("""
|
| 10 |
-
<style>
|
| 11 |
-
.scroll-container {
|
| 12 |
-
height: 500px; /* Set the height of the scrollable section */
|
| 13 |
-
overflow-y: scroll;
|
| 14 |
-
padding: 10px;
|
| 15 |
-
border: 1px solid #ccc; /* Optional: Add border to make the scrollable area more visible */
|
| 16 |
-
}
|
| 17 |
-
</style>
|
| 18 |
-
""", unsafe_allow_html=True)
|
| 19 |
-
|
| 20 |
# load model and files
|
| 21 |
with open('./trained_model.pkl', 'rb') as file:
|
| 22 |
model = pickle.load(file)
|
|
@@ -31,61 +20,46 @@ with open("./cities_geo.json", "r") as f:
|
|
| 31 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
| 32 |
|
| 33 |
with col1:
|
| 34 |
-
st.subheader('Features')
|
| 35 |
-
|
| 36 |
-
with st.container():
|
| 37 |
-
st.markdown('<div class="scroll-container">', unsafe_allow_html=True)
|
| 38 |
-
|
| 39 |
-
# Create two columns for City and Waterfront
|
| 40 |
-
col3, col4 = st.columns(2)
|
| 41 |
-
|
| 42 |
-
# City dropdown in the first column
|
| 43 |
-
with col3:
|
| 44 |
-
city = st.selectbox('City', list(cities_geo.keys()))
|
| 45 |
-
|
| 46 |
-
# Waterfront checkbox in the second column
|
| 47 |
-
with col4:
|
| 48 |
-
waterfront = st.checkbox('Waterfront', value=False)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
new_pred = init_new_pred()
|
| 67 |
-
new_pred['bedrooms'] = bedrooms
|
| 68 |
-
new_pred['bathrooms'] = bathrooms
|
| 69 |
-
new_pred['sqft_living'] = sqft_living
|
| 70 |
-
new_pred['sqft_lot'] = sqft_lot
|
| 71 |
-
new_pred['floors'] = floors
|
| 72 |
-
new_pred['waterfront'] = int(waterfront)
|
| 73 |
-
new_pred['view'] = view
|
| 74 |
-
new_pred['condition'] = condition
|
| 75 |
-
new_pred['sqft_above'] = sqft_above
|
| 76 |
-
new_pred['sqft_basement'] = sqft_basement
|
| 77 |
-
new_pred['yr_built'] = yr_built
|
| 78 |
-
new_pred['yr_renovated'] = yr_renovated
|
| 79 |
-
new_pred[f'city_{city}'] = 1
|
| 80 |
-
|
| 81 |
-
# Process the prediction
|
| 82 |
-
new_pred = pd.DataFrame([new_pred])
|
| 83 |
-
new_pred = create_new_features(new_pred)
|
| 84 |
-
new_pred = bucketize(new_pred)
|
| 85 |
-
new_pred = normalize(new_pred)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
# Display the map in the second column
|
| 91 |
with col2:
|
|
|
|
| 6 |
|
| 7 |
st.set_page_config(layout="wide")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# load model and files
|
| 10 |
with open('./trained_model.pkl', 'rb') as file:
|
| 11 |
model = pickle.load(file)
|
|
|
|
| 20 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
| 21 |
|
| 22 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
city = st.selectbox('City', list(cities_geo.keys())) # Display city dropdown in the first column
|
| 25 |
+
waterfront = st.checkbox('Waterfront', value=False)
|
| 26 |
+
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=3)
|
| 27 |
+
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=2)
|
| 28 |
+
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=1000)
|
| 29 |
+
sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=2000)
|
| 30 |
+
floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=1)
|
| 31 |
+
view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=0)
|
| 32 |
+
condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=3)
|
| 33 |
+
sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=1000)
|
| 34 |
+
sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=0)
|
| 35 |
+
yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=2000)
|
| 36 |
+
yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=2010)
|
| 37 |
+
|
| 38 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
new_pred = init_new_pred()
|
| 41 |
+
new_pred['bedrooms'] = bedrooms
|
| 42 |
+
new_pred['bathrooms'] = bathrooms
|
| 43 |
+
new_pred['sqft_living'] = sqft_living
|
| 44 |
+
new_pred['sqft_lot'] = sqft_lot
|
| 45 |
+
new_pred['floors'] = floors
|
| 46 |
+
new_pred['waterfront'] = int(waterfront)
|
| 47 |
+
new_pred['view'] = view
|
| 48 |
+
new_pred['condition'] = condition
|
| 49 |
+
new_pred['sqft_above'] = sqft_above
|
| 50 |
+
new_pred['sqft_basement'] = sqft_basement
|
| 51 |
+
new_pred['yr_built'] = yr_built
|
| 52 |
+
new_pred['yr_renovated'] = yr_renovated
|
| 53 |
+
new_pred[f'city_{city}'] = 1
|
| 54 |
+
|
| 55 |
+
# Process the prediction
|
| 56 |
+
new_pred = pd.DataFrame([new_pred])
|
| 57 |
+
new_pred = create_new_features(new_pred)
|
| 58 |
+
new_pred = bucketize(new_pred)
|
| 59 |
+
new_pred = normalize(new_pred)
|
| 60 |
+
|
| 61 |
+
# Predict the price
|
| 62 |
+
predicted_price = model.predict(new_pred)
|
| 63 |
|
| 64 |
# Display the map in the second column
|
| 65 |
with col2:
|