Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -40,18 +40,14 @@ max_dict = {
|
|
| 40 |
'house_age': 114,
|
| 41 |
'years_since_renovation': 2014
|
| 42 |
}
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
# Create two columns: one for the city and one for the map
|
| 47 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
| 48 |
|
| 49 |
# Display city dropdown in the first column
|
| 50 |
with col1:
|
| 51 |
-
|
| 52 |
-
price_placeholder = st.empty()
|
| 53 |
|
| 54 |
-
st.subheader('City Selection')
|
| 55 |
city = st.selectbox(
|
| 56 |
'Select City',
|
| 57 |
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
|
|
@@ -64,10 +60,7 @@ with col1:
|
|
| 64 |
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
|
| 65 |
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
|
| 66 |
'Woodinville', 'Yarrow Point'],
|
| 67 |
-
|
| 68 |
)
|
| 69 |
-
|
| 70 |
-
# Create sliders for each item in the dictionaries
|
| 71 |
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms'])
|
| 72 |
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms'])
|
| 73 |
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
|
|
@@ -118,20 +111,234 @@ with col1:
|
|
| 118 |
# Predict the price
|
| 119 |
predicted_price = model.predict(new_pred)
|
| 120 |
|
| 121 |
-
# Display the predicted price at the top of the app
|
| 122 |
-
price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}")
|
| 123 |
-
|
| 124 |
# Display the map in the second column
|
| 125 |
with col2:
|
| 126 |
st.subheader('Map')
|
| 127 |
-
if city == '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
map_data = pd.DataFrame({
|
| 129 |
-
'latitude': [47.
|
| 130 |
-
'longitude': [-122.
|
| 131 |
})
|
| 132 |
elif city == 'Auburn':
|
| 133 |
map_data = pd.DataFrame({
|
| 134 |
-
'latitude': [47.
|
| 135 |
-
'longitude': [-122.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
st.map(map_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
'house_age': 114,
|
| 41 |
'years_since_renovation': 2014
|
| 42 |
}
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# Create two columns: one for the city and one for the map
|
| 45 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
| 46 |
|
| 47 |
# Display city dropdown in the first column
|
| 48 |
with col1:
|
| 49 |
+
st.subheader('Features')
|
|
|
|
| 50 |
|
|
|
|
| 51 |
city = st.selectbox(
|
| 52 |
'Select City',
|
| 53 |
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
|
|
|
|
| 60 |
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
|
| 61 |
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
|
| 62 |
'Woodinville', 'Yarrow Point'],
|
|
|
|
| 63 |
)
|
|
|
|
|
|
|
| 64 |
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms'])
|
| 65 |
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms'])
|
| 66 |
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
|
|
|
|
| 111 |
# Predict the price
|
| 112 |
predicted_price = model.predict(new_pred)
|
| 113 |
|
|
|
|
|
|
|
|
|
|
| 114 |
# Display the map in the second column
|
| 115 |
with col2:
|
| 116 |
st.subheader('Map')
|
| 117 |
+
if city == 'Seattle':
|
| 118 |
+
map_data = pd.DataFrame({
|
| 119 |
+
'latitude': [47.6097, 47.6205, 47.6762],
|
| 120 |
+
'longitude': [-122.3331, -122.3493, -122.3198]
|
| 121 |
+
})
|
| 122 |
+
elif city == 'Bellevue':
|
| 123 |
+
map_data = pd.DataFrame({
|
| 124 |
+
'latitude': [47.6101, 47.6183],
|
| 125 |
+
'longitude': [-122.2015, -122.2046]
|
| 126 |
+
})
|
| 127 |
+
elif city == 'Algona':
|
| 128 |
map_data = pd.DataFrame({
|
| 129 |
+
'latitude': [47.3162],
|
| 130 |
+
'longitude': [-122.2295]
|
| 131 |
})
|
| 132 |
elif city == 'Auburn':
|
| 133 |
map_data = pd.DataFrame({
|
| 134 |
+
'latitude': [47.3073],
|
| 135 |
+
'longitude': [-122.2284]
|
| 136 |
+
})
|
| 137 |
+
elif city == 'Beaux Arts Village':
|
| 138 |
+
map_data = pd.DataFrame({
|
| 139 |
+
'latitude': [47.6141],
|
| 140 |
+
'longitude': [-122.2125]
|
| 141 |
+
})
|
| 142 |
+
elif city == 'Black Diamond':
|
| 143 |
+
map_data = pd.DataFrame({
|
| 144 |
+
'latitude': [47.3465],
|
| 145 |
+
'longitude': [-121.9877]
|
| 146 |
+
})
|
| 147 |
+
elif city == 'Bothell':
|
| 148 |
+
map_data = pd.DataFrame({
|
| 149 |
+
'latitude': [47.7595],
|
| 150 |
+
'longitude': [-122.2056]
|
| 151 |
+
})
|
| 152 |
+
elif city == 'Burien':
|
| 153 |
+
map_data = pd.DataFrame({
|
| 154 |
+
'latitude': [47.4702],
|
| 155 |
+
'longitude': [-122.3359]
|
| 156 |
+
})
|
| 157 |
+
elif city == 'Carnation':
|
| 158 |
+
map_data = pd.DataFrame({
|
| 159 |
+
'latitude': [47.6460],
|
| 160 |
+
'longitude': [-121.9758]
|
| 161 |
+
})
|
| 162 |
+
elif city == 'Clyde Hill':
|
| 163 |
+
map_data = pd.DataFrame({
|
| 164 |
+
'latitude': [47.6330],
|
| 165 |
+
'longitude': [-122.2107]
|
| 166 |
})
|
| 167 |
+
elif city == 'Covington':
|
| 168 |
+
map_data = pd.DataFrame({
|
| 169 |
+
'latitude': [47.3765],
|
| 170 |
+
'longitude': [-122.0288]
|
| 171 |
+
})
|
| 172 |
+
elif city == 'Des Moines':
|
| 173 |
+
map_data = pd.DataFrame({
|
| 174 |
+
'latitude': [47.3840],
|
| 175 |
+
'longitude': [-122.3061]
|
| 176 |
+
})
|
| 177 |
+
elif city == 'Duvall':
|
| 178 |
+
map_data = pd.DataFrame({
|
| 179 |
+
'latitude': [47.7332],
|
| 180 |
+
'longitude': [-121.9916]
|
| 181 |
+
})
|
| 182 |
+
elif city == 'Enumclaw':
|
| 183 |
+
map_data = pd.DataFrame({
|
| 184 |
+
'latitude': [47.2059],
|
| 185 |
+
'longitude': [-121.9876]
|
| 186 |
+
})
|
| 187 |
+
elif city == 'Fall City':
|
| 188 |
+
map_data = pd.DataFrame({
|
| 189 |
+
'latitude': [47.5980],
|
| 190 |
+
'longitude': [-121.8896]
|
| 191 |
+
})
|
| 192 |
+
elif city == 'Federal Way':
|
| 193 |
+
map_data = pd.DataFrame({
|
| 194 |
+
'latitude': [47.3220],
|
| 195 |
+
'longitude': [-122.3126]
|
| 196 |
+
})
|
| 197 |
+
elif city == 'Inglewood-Finn Hill':
|
| 198 |
+
map_data = pd.DataFrame({
|
| 199 |
+
'latitude': [47.7338],
|
| 200 |
+
'longitude': [-122.2780]
|
| 201 |
+
})
|
| 202 |
+
elif city == 'Issaquah':
|
| 203 |
+
map_data = pd.DataFrame({
|
| 204 |
+
'latitude': [47.5410],
|
| 205 |
+
'longitude': [-122.0311]
|
| 206 |
+
})
|
| 207 |
+
elif city == 'Kenmore':
|
| 208 |
+
map_data = pd.DataFrame({
|
| 209 |
+
'latitude': [47.7557],
|
| 210 |
+
'longitude': [-122.2416]
|
| 211 |
+
})
|
| 212 |
+
elif city == 'Kent':
|
| 213 |
+
map_data = pd.DataFrame({
|
| 214 |
+
'latitude': [47.3809],
|
| 215 |
+
'longitude': [-122.2348]
|
| 216 |
+
})
|
| 217 |
+
elif city == 'Kirkland':
|
| 218 |
+
map_data = pd.DataFrame({
|
| 219 |
+
'latitude': [47.6810],
|
| 220 |
+
'longitude': [-122.2087]
|
| 221 |
+
})
|
| 222 |
+
elif city == 'Lake Forest Park':
|
| 223 |
+
map_data = pd.DataFrame({
|
| 224 |
+
'latitude': [47.7318],
|
| 225 |
+
'longitude': [-122.2764]
|
| 226 |
+
})
|
| 227 |
+
elif city == 'Maple Valley':
|
| 228 |
+
map_data = pd.DataFrame({
|
| 229 |
+
'latitude': [47.3610],
|
| 230 |
+
'longitude': [-122.0240]
|
| 231 |
+
})
|
| 232 |
+
elif city == 'Medina':
|
| 233 |
+
map_data = pd.DataFrame({
|
| 234 |
+
'latitude': [47.6357],
|
| 235 |
+
'longitude': [-122.2169]
|
| 236 |
+
})
|
| 237 |
+
elif city == 'Mercer Island':
|
| 238 |
+
map_data = pd.DataFrame({
|
| 239 |
+
'latitude': [47.5703],
|
| 240 |
+
'longitude': [-122.2264]
|
| 241 |
+
})
|
| 242 |
+
elif city == 'Milton':
|
| 243 |
+
map_data = pd.DataFrame({
|
| 244 |
+
'latitude': [47.2335],
|
| 245 |
+
'longitude': [-122.2730]
|
| 246 |
+
})
|
| 247 |
+
elif city == 'Newcastle':
|
| 248 |
+
map_data = pd.DataFrame({
|
| 249 |
+
'latitude': [47.5477],
|
| 250 |
+
'longitude': [-122.1711]
|
| 251 |
+
})
|
| 252 |
+
elif city == 'Normandy Park':
|
| 253 |
+
map_data = pd.DataFrame({
|
| 254 |
+
'latitude': [47.4051],
|
| 255 |
+
'longitude': [-122.3376]
|
| 256 |
+
})
|
| 257 |
+
elif city == 'North Bend':
|
| 258 |
+
map_data = pd.DataFrame({
|
| 259 |
+
'latitude': [47.4904],
|
| 260 |
+
'longitude': [-121.7852]
|
| 261 |
+
})
|
| 262 |
+
elif city == 'Pacific':
|
| 263 |
+
map_data = pd.DataFrame({
|
| 264 |
+
'latitude': [47.3197],
|
| 265 |
+
'longitude': [-122.2786]
|
| 266 |
+
})
|
| 267 |
+
elif city == 'Preston':
|
| 268 |
+
map_data = pd.DataFrame({
|
| 269 |
+
'latitude': [47.5420],
|
| 270 |
+
'longitude': [-121.9214]
|
| 271 |
+
})
|
| 272 |
+
elif city == 'Ravensdale':
|
| 273 |
+
map_data = pd.DataFrame({
|
| 274 |
+
'latitude': [47.3485],
|
| 275 |
+
'longitude': [-121.9807]
|
| 276 |
+
})
|
| 277 |
+
elif city == 'Redmond':
|
| 278 |
+
map_data = pd.DataFrame({
|
| 279 |
+
'latitude': [47.6734],
|
| 280 |
+
'longitude': [-122.1215]
|
| 281 |
+
})
|
| 282 |
+
elif city == 'Renton':
|
| 283 |
+
map_data = pd.DataFrame({
|
| 284 |
+
'latitude': [47.4829],
|
| 285 |
+
'longitude': [-122.2170]
|
| 286 |
+
})
|
| 287 |
+
elif city == 'Sammamish':
|
| 288 |
+
map_data = pd.DataFrame({
|
| 289 |
+
'latitude': [47.6162],
|
| 290 |
+
'longitude': [-122.0394]
|
| 291 |
+
})
|
| 292 |
+
elif city == 'SeaTac':
|
| 293 |
+
map_data = pd.DataFrame({
|
| 294 |
+
'latitude': [47.4484],
|
| 295 |
+
'longitude': [-122.3085]
|
| 296 |
+
})
|
| 297 |
+
elif city == 'Shoreline':
|
| 298 |
+
map_data = pd.DataFrame({
|
| 299 |
+
'latitude': [47.7554],
|
| 300 |
+
'longitude': [-122.3410]
|
| 301 |
+
})
|
| 302 |
+
elif city == 'Skykomish':
|
| 303 |
+
map_data = pd.DataFrame({
|
| 304 |
+
'latitude': [47.7054],
|
| 305 |
+
'longitude': [-121.4848]
|
| 306 |
+
})
|
| 307 |
+
elif city == 'Snoqualmie':
|
| 308 |
+
map_data = pd.DataFrame({
|
| 309 |
+
'latitude': [47.5410],
|
| 310 |
+
'longitude': [-121.8340]
|
| 311 |
+
})
|
| 312 |
+
elif city == 'Snoqualmie Pass':
|
| 313 |
+
map_data = pd.DataFrame({
|
| 314 |
+
'latitude': [47.4286],
|
| 315 |
+
'longitude': [-121.4420]
|
| 316 |
+
})
|
| 317 |
+
elif city == 'Tukwila':
|
| 318 |
+
map_data = pd.DataFrame({
|
| 319 |
+
'latitude': [47.4835],
|
| 320 |
+
'longitude': [-122.2585]
|
| 321 |
+
})
|
| 322 |
+
elif city == 'Vashon':
|
| 323 |
+
map_data = pd.DataFrame({
|
| 324 |
+
'latitude': [47.4337],
|
| 325 |
+
'longitude': [-122.4660]
|
| 326 |
+
})
|
| 327 |
+
elif city == 'Woodinville':
|
| 328 |
+
map_data = pd.DataFrame({
|
| 329 |
+
'latitude': [47.7524],
|
| 330 |
+
'longitude': [-122.1576]
|
| 331 |
+
})
|
| 332 |
+
elif city == 'Yarrow Point':
|
| 333 |
+
map_data = pd.DataFrame({
|
| 334 |
+
'latitude': [47.6348],
|
| 335 |
+
'longitude': [-122.2218]
|
| 336 |
+
})
|
| 337 |
+
|
| 338 |
st.map(map_data)
|
| 339 |
+
|
| 340 |
+
# Placeholder for displaying the predicted price at the top
|
| 341 |
+
price_placeholder = st.empty()
|
| 342 |
+
|
| 343 |
+
# Display the predicted price at the top of the app
|
| 344 |
+
price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}")
|