Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -40,18 +40,14 @@ max_dict = {
|
|
40 |
'house_age': 114,
|
41 |
'years_since_renovation': 2014
|
42 |
}
|
43 |
-
|
44 |
-
|
45 |
|
46 |
# Create two columns: one for the city and one for the map
|
47 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
48 |
|
49 |
# Display city dropdown in the first column
|
50 |
with col1:
|
51 |
-
|
52 |
-
price_placeholder = st.empty()
|
53 |
|
54 |
-
st.subheader('City Selection')
|
55 |
city = st.selectbox(
|
56 |
'Select City',
|
57 |
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
|
@@ -64,10 +60,7 @@ with col1:
|
|
64 |
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
|
65 |
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
|
66 |
'Woodinville', 'Yarrow Point'],
|
67 |
-
|
68 |
)
|
69 |
-
|
70 |
-
# Create sliders for each item in the dictionaries
|
71 |
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms'])
|
72 |
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms'])
|
73 |
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
|
@@ -118,20 +111,234 @@ with col1:
|
|
118 |
# Predict the price
|
119 |
predicted_price = model.predict(new_pred)
|
120 |
|
121 |
-
# Display the predicted price at the top of the app
|
122 |
-
price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}")
|
123 |
-
|
124 |
# Display the map in the second column
|
125 |
with col2:
|
126 |
st.subheader('Map')
|
127 |
-
if city == '
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
map_data = pd.DataFrame({
|
129 |
-
'latitude': [47.
|
130 |
-
'longitude': [-122.
|
131 |
})
|
132 |
elif city == 'Auburn':
|
133 |
map_data = pd.DataFrame({
|
134 |
-
'latitude': [47.
|
135 |
-
'longitude': [-122.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
st.map(map_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
'house_age': 114,
|
41 |
'years_since_renovation': 2014
|
42 |
}
|
|
|
|
|
43 |
|
44 |
# Create two columns: one for the city and one for the map
|
45 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
46 |
|
47 |
# Display city dropdown in the first column
|
48 |
with col1:
|
49 |
+
st.subheader('Features')
|
|
|
50 |
|
|
|
51 |
city = st.selectbox(
|
52 |
'Select City',
|
53 |
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
|
|
|
60 |
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
|
61 |
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
|
62 |
'Woodinville', 'Yarrow Point'],
|
|
|
63 |
)
|
|
|
|
|
64 |
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms'])
|
65 |
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms'])
|
66 |
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
|
|
|
111 |
# Predict the price
|
112 |
predicted_price = model.predict(new_pred)
|
113 |
|
|
|
|
|
|
|
114 |
# Display the map in the second column
|
115 |
with col2:
|
116 |
st.subheader('Map')
|
117 |
+
if city == 'Seattle':
|
118 |
+
map_data = pd.DataFrame({
|
119 |
+
'latitude': [47.6097, 47.6205, 47.6762],
|
120 |
+
'longitude': [-122.3331, -122.3493, -122.3198]
|
121 |
+
})
|
122 |
+
elif city == 'Bellevue':
|
123 |
+
map_data = pd.DataFrame({
|
124 |
+
'latitude': [47.6101, 47.6183],
|
125 |
+
'longitude': [-122.2015, -122.2046]
|
126 |
+
})
|
127 |
+
elif city == 'Algona':
|
128 |
map_data = pd.DataFrame({
|
129 |
+
'latitude': [47.3162],
|
130 |
+
'longitude': [-122.2295]
|
131 |
})
|
132 |
elif city == 'Auburn':
|
133 |
map_data = pd.DataFrame({
|
134 |
+
'latitude': [47.3073],
|
135 |
+
'longitude': [-122.2284]
|
136 |
+
})
|
137 |
+
elif city == 'Beaux Arts Village':
|
138 |
+
map_data = pd.DataFrame({
|
139 |
+
'latitude': [47.6141],
|
140 |
+
'longitude': [-122.2125]
|
141 |
+
})
|
142 |
+
elif city == 'Black Diamond':
|
143 |
+
map_data = pd.DataFrame({
|
144 |
+
'latitude': [47.3465],
|
145 |
+
'longitude': [-121.9877]
|
146 |
+
})
|
147 |
+
elif city == 'Bothell':
|
148 |
+
map_data = pd.DataFrame({
|
149 |
+
'latitude': [47.7595],
|
150 |
+
'longitude': [-122.2056]
|
151 |
+
})
|
152 |
+
elif city == 'Burien':
|
153 |
+
map_data = pd.DataFrame({
|
154 |
+
'latitude': [47.4702],
|
155 |
+
'longitude': [-122.3359]
|
156 |
+
})
|
157 |
+
elif city == 'Carnation':
|
158 |
+
map_data = pd.DataFrame({
|
159 |
+
'latitude': [47.6460],
|
160 |
+
'longitude': [-121.9758]
|
161 |
+
})
|
162 |
+
elif city == 'Clyde Hill':
|
163 |
+
map_data = pd.DataFrame({
|
164 |
+
'latitude': [47.6330],
|
165 |
+
'longitude': [-122.2107]
|
166 |
})
|
167 |
+
elif city == 'Covington':
|
168 |
+
map_data = pd.DataFrame({
|
169 |
+
'latitude': [47.3765],
|
170 |
+
'longitude': [-122.0288]
|
171 |
+
})
|
172 |
+
elif city == 'Des Moines':
|
173 |
+
map_data = pd.DataFrame({
|
174 |
+
'latitude': [47.3840],
|
175 |
+
'longitude': [-122.3061]
|
176 |
+
})
|
177 |
+
elif city == 'Duvall':
|
178 |
+
map_data = pd.DataFrame({
|
179 |
+
'latitude': [47.7332],
|
180 |
+
'longitude': [-121.9916]
|
181 |
+
})
|
182 |
+
elif city == 'Enumclaw':
|
183 |
+
map_data = pd.DataFrame({
|
184 |
+
'latitude': [47.2059],
|
185 |
+
'longitude': [-121.9876]
|
186 |
+
})
|
187 |
+
elif city == 'Fall City':
|
188 |
+
map_data = pd.DataFrame({
|
189 |
+
'latitude': [47.5980],
|
190 |
+
'longitude': [-121.8896]
|
191 |
+
})
|
192 |
+
elif city == 'Federal Way':
|
193 |
+
map_data = pd.DataFrame({
|
194 |
+
'latitude': [47.3220],
|
195 |
+
'longitude': [-122.3126]
|
196 |
+
})
|
197 |
+
elif city == 'Inglewood-Finn Hill':
|
198 |
+
map_data = pd.DataFrame({
|
199 |
+
'latitude': [47.7338],
|
200 |
+
'longitude': [-122.2780]
|
201 |
+
})
|
202 |
+
elif city == 'Issaquah':
|
203 |
+
map_data = pd.DataFrame({
|
204 |
+
'latitude': [47.5410],
|
205 |
+
'longitude': [-122.0311]
|
206 |
+
})
|
207 |
+
elif city == 'Kenmore':
|
208 |
+
map_data = pd.DataFrame({
|
209 |
+
'latitude': [47.7557],
|
210 |
+
'longitude': [-122.2416]
|
211 |
+
})
|
212 |
+
elif city == 'Kent':
|
213 |
+
map_data = pd.DataFrame({
|
214 |
+
'latitude': [47.3809],
|
215 |
+
'longitude': [-122.2348]
|
216 |
+
})
|
217 |
+
elif city == 'Kirkland':
|
218 |
+
map_data = pd.DataFrame({
|
219 |
+
'latitude': [47.6810],
|
220 |
+
'longitude': [-122.2087]
|
221 |
+
})
|
222 |
+
elif city == 'Lake Forest Park':
|
223 |
+
map_data = pd.DataFrame({
|
224 |
+
'latitude': [47.7318],
|
225 |
+
'longitude': [-122.2764]
|
226 |
+
})
|
227 |
+
elif city == 'Maple Valley':
|
228 |
+
map_data = pd.DataFrame({
|
229 |
+
'latitude': [47.3610],
|
230 |
+
'longitude': [-122.0240]
|
231 |
+
})
|
232 |
+
elif city == 'Medina':
|
233 |
+
map_data = pd.DataFrame({
|
234 |
+
'latitude': [47.6357],
|
235 |
+
'longitude': [-122.2169]
|
236 |
+
})
|
237 |
+
elif city == 'Mercer Island':
|
238 |
+
map_data = pd.DataFrame({
|
239 |
+
'latitude': [47.5703],
|
240 |
+
'longitude': [-122.2264]
|
241 |
+
})
|
242 |
+
elif city == 'Milton':
|
243 |
+
map_data = pd.DataFrame({
|
244 |
+
'latitude': [47.2335],
|
245 |
+
'longitude': [-122.2730]
|
246 |
+
})
|
247 |
+
elif city == 'Newcastle':
|
248 |
+
map_data = pd.DataFrame({
|
249 |
+
'latitude': [47.5477],
|
250 |
+
'longitude': [-122.1711]
|
251 |
+
})
|
252 |
+
elif city == 'Normandy Park':
|
253 |
+
map_data = pd.DataFrame({
|
254 |
+
'latitude': [47.4051],
|
255 |
+
'longitude': [-122.3376]
|
256 |
+
})
|
257 |
+
elif city == 'North Bend':
|
258 |
+
map_data = pd.DataFrame({
|
259 |
+
'latitude': [47.4904],
|
260 |
+
'longitude': [-121.7852]
|
261 |
+
})
|
262 |
+
elif city == 'Pacific':
|
263 |
+
map_data = pd.DataFrame({
|
264 |
+
'latitude': [47.3197],
|
265 |
+
'longitude': [-122.2786]
|
266 |
+
})
|
267 |
+
elif city == 'Preston':
|
268 |
+
map_data = pd.DataFrame({
|
269 |
+
'latitude': [47.5420],
|
270 |
+
'longitude': [-121.9214]
|
271 |
+
})
|
272 |
+
elif city == 'Ravensdale':
|
273 |
+
map_data = pd.DataFrame({
|
274 |
+
'latitude': [47.3485],
|
275 |
+
'longitude': [-121.9807]
|
276 |
+
})
|
277 |
+
elif city == 'Redmond':
|
278 |
+
map_data = pd.DataFrame({
|
279 |
+
'latitude': [47.6734],
|
280 |
+
'longitude': [-122.1215]
|
281 |
+
})
|
282 |
+
elif city == 'Renton':
|
283 |
+
map_data = pd.DataFrame({
|
284 |
+
'latitude': [47.4829],
|
285 |
+
'longitude': [-122.2170]
|
286 |
+
})
|
287 |
+
elif city == 'Sammamish':
|
288 |
+
map_data = pd.DataFrame({
|
289 |
+
'latitude': [47.6162],
|
290 |
+
'longitude': [-122.0394]
|
291 |
+
})
|
292 |
+
elif city == 'SeaTac':
|
293 |
+
map_data = pd.DataFrame({
|
294 |
+
'latitude': [47.4484],
|
295 |
+
'longitude': [-122.3085]
|
296 |
+
})
|
297 |
+
elif city == 'Shoreline':
|
298 |
+
map_data = pd.DataFrame({
|
299 |
+
'latitude': [47.7554],
|
300 |
+
'longitude': [-122.3410]
|
301 |
+
})
|
302 |
+
elif city == 'Skykomish':
|
303 |
+
map_data = pd.DataFrame({
|
304 |
+
'latitude': [47.7054],
|
305 |
+
'longitude': [-121.4848]
|
306 |
+
})
|
307 |
+
elif city == 'Snoqualmie':
|
308 |
+
map_data = pd.DataFrame({
|
309 |
+
'latitude': [47.5410],
|
310 |
+
'longitude': [-121.8340]
|
311 |
+
})
|
312 |
+
elif city == 'Snoqualmie Pass':
|
313 |
+
map_data = pd.DataFrame({
|
314 |
+
'latitude': [47.4286],
|
315 |
+
'longitude': [-121.4420]
|
316 |
+
})
|
317 |
+
elif city == 'Tukwila':
|
318 |
+
map_data = pd.DataFrame({
|
319 |
+
'latitude': [47.4835],
|
320 |
+
'longitude': [-122.2585]
|
321 |
+
})
|
322 |
+
elif city == 'Vashon':
|
323 |
+
map_data = pd.DataFrame({
|
324 |
+
'latitude': [47.4337],
|
325 |
+
'longitude': [-122.4660]
|
326 |
+
})
|
327 |
+
elif city == 'Woodinville':
|
328 |
+
map_data = pd.DataFrame({
|
329 |
+
'latitude': [47.7524],
|
330 |
+
'longitude': [-122.1576]
|
331 |
+
})
|
332 |
+
elif city == 'Yarrow Point':
|
333 |
+
map_data = pd.DataFrame({
|
334 |
+
'latitude': [47.6348],
|
335 |
+
'longitude': [-122.2218]
|
336 |
+
})
|
337 |
+
|
338 |
st.map(map_data)
|
339 |
+
|
340 |
+
# Placeholder for displaying the predicted price at the top
|
341 |
+
price_placeholder = st.empty()
|
342 |
+
|
343 |
+
# Display the predicted price at the top of the app
|
344 |
+
price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}")
|