Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,6 +4,20 @@ import pickle
|
|
| 4 |
import json
|
| 5 |
from utils import create_new_features, normalize, bucketize, init_new_pred
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
with open('./trained_model.pkl', 'rb') as file:
|
| 8 |
model = pickle.load(file)
|
| 9 |
with open("./min_dict.json", "r") as f:
|
|
@@ -13,29 +27,28 @@ with open("./max_dict.json", "r") as f:
|
|
| 13 |
with open("./cities_geo.json", "r") as f:
|
| 14 |
cities_geo = json.load(f)
|
| 15 |
|
| 16 |
-
st.set_page_config(layout="wide")
|
| 17 |
-
|
| 18 |
# Create two columns: one for the city and one for the map
|
| 19 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
| 20 |
|
| 21 |
with col1:
|
| 22 |
st.subheader('Features')
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=3)
|
| 40 |
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=2)
|
| 41 |
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=1000)
|
|
@@ -47,6 +60,8 @@ with col1:
|
|
| 47 |
sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=0)
|
| 48 |
yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=2000)
|
| 49 |
yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=2010)
|
|
|
|
|
|
|
| 50 |
|
| 51 |
new_pred = init_new_pred()
|
| 52 |
new_pred['bedrooms'] = bedrooms
|
|
@@ -78,230 +93,7 @@ with col2:
|
|
| 78 |
price_placeholder = st.empty()
|
| 79 |
price_placeholder.markdown(
|
| 80 |
f"<h1 style='font-size: 24px;'>Predicted Price: ${predicted_price[0][0]:,.2f}</h1>",
|
| 81 |
-
unsafe_allow_html=True
|
| 82 |
-
)
|
| 83 |
|
| 84 |
map_data = pd.DataFrame(cities_geo[city])
|
| 85 |
-
|
| 86 |
-
# if city == 'Seattle':
|
| 87 |
-
# map_data = pd.DataFrame({
|
| 88 |
-
# 'latitude': [47.6097, 47.6205, 47.6762],
|
| 89 |
-
# 'longitude': [-122.3331, -122.3493, -122.3198]
|
| 90 |
-
# })
|
| 91 |
-
# elif city == 'Bellevue':
|
| 92 |
-
# map_data = pd.DataFrame({
|
| 93 |
-
# 'latitude': [47.6101, 47.6183],
|
| 94 |
-
# 'longitude': [-122.2015, -122.2046]
|
| 95 |
-
# })
|
| 96 |
-
# elif city == 'Algona':
|
| 97 |
-
# map_data = pd.DataFrame({
|
| 98 |
-
# 'latitude': [47.3162],
|
| 99 |
-
# 'longitude': [-122.2295]
|
| 100 |
-
# })
|
| 101 |
-
# elif city == 'Auburn':
|
| 102 |
-
# map_data = pd.DataFrame({
|
| 103 |
-
# 'latitude': [47.3073],
|
| 104 |
-
# 'longitude': [-122.2284]
|
| 105 |
-
# })
|
| 106 |
-
# elif city == 'Beaux Arts Village':
|
| 107 |
-
# map_data = pd.DataFrame({
|
| 108 |
-
# 'latitude': [47.6141],
|
| 109 |
-
# 'longitude': [-122.2125]
|
| 110 |
-
# })
|
| 111 |
-
# elif city == 'Black Diamond':
|
| 112 |
-
# map_data = pd.DataFrame({
|
| 113 |
-
# 'latitude': [47.3465],
|
| 114 |
-
# 'longitude': [-121.9877]
|
| 115 |
-
# })
|
| 116 |
-
# elif city == 'Bothell':
|
| 117 |
-
# map_data = pd.DataFrame({
|
| 118 |
-
# 'latitude': [47.7595],
|
| 119 |
-
# 'longitude': [-122.2056]
|
| 120 |
-
# })
|
| 121 |
-
# elif city == 'Burien':
|
| 122 |
-
# map_data = pd.DataFrame({
|
| 123 |
-
# 'latitude': [47.4702],
|
| 124 |
-
# 'longitude': [-122.3359]
|
| 125 |
-
# })
|
| 126 |
-
# elif city == 'Carnation':
|
| 127 |
-
# map_data = pd.DataFrame({
|
| 128 |
-
# 'latitude': [47.6460],
|
| 129 |
-
# 'longitude': [-121.9758]
|
| 130 |
-
# })
|
| 131 |
-
# elif city == 'Clyde Hill':
|
| 132 |
-
# map_data = pd.DataFrame({
|
| 133 |
-
# 'latitude': [47.6330],
|
| 134 |
-
# 'longitude': [-122.2107]
|
| 135 |
-
# })
|
| 136 |
-
# elif city == 'Covington':
|
| 137 |
-
# map_data = pd.DataFrame({
|
| 138 |
-
# 'latitude': [47.3765],
|
| 139 |
-
# 'longitude': [-122.0288]
|
| 140 |
-
# })
|
| 141 |
-
# elif city == 'Des Moines':
|
| 142 |
-
# map_data = pd.DataFrame({
|
| 143 |
-
# 'latitude': [47.3840],
|
| 144 |
-
# 'longitude': [-122.3061]
|
| 145 |
-
# })
|
| 146 |
-
# elif city == 'Duvall':
|
| 147 |
-
# map_data = pd.DataFrame({
|
| 148 |
-
# 'latitude': [47.7332],
|
| 149 |
-
# 'longitude': [-121.9916]
|
| 150 |
-
# })
|
| 151 |
-
# elif city == 'Enumclaw':
|
| 152 |
-
# map_data = pd.DataFrame({
|
| 153 |
-
# 'latitude': [47.2059],
|
| 154 |
-
# 'longitude': [-121.9876]
|
| 155 |
-
# })
|
| 156 |
-
# elif city == 'Fall City':
|
| 157 |
-
# map_data = pd.DataFrame({
|
| 158 |
-
# 'latitude': [47.5980],
|
| 159 |
-
# 'longitude': [-121.8896]
|
| 160 |
-
# })
|
| 161 |
-
# elif city == 'Federal Way':
|
| 162 |
-
# map_data = pd.DataFrame({
|
| 163 |
-
# 'latitude': [47.3220],
|
| 164 |
-
# 'longitude': [-122.3126]
|
| 165 |
-
# })
|
| 166 |
-
# elif city == 'Inglewood-Finn Hill':
|
| 167 |
-
# map_data = pd.DataFrame({
|
| 168 |
-
# 'latitude': [47.7338],
|
| 169 |
-
# 'longitude': [-122.2780]
|
| 170 |
-
# })
|
| 171 |
-
# elif city == 'Issaquah':
|
| 172 |
-
# map_data = pd.DataFrame({
|
| 173 |
-
# 'latitude': [47.5410],
|
| 174 |
-
# 'longitude': [-122.0311]
|
| 175 |
-
# })
|
| 176 |
-
# elif city == 'Kenmore':
|
| 177 |
-
# map_data = pd.DataFrame({
|
| 178 |
-
# 'latitude': [47.7557],
|
| 179 |
-
# 'longitude': [-122.2416]
|
| 180 |
-
# })
|
| 181 |
-
# elif city == 'Kent':
|
| 182 |
-
# map_data = pd.DataFrame({
|
| 183 |
-
# 'latitude': [47.3809],
|
| 184 |
-
# 'longitude': [-122.2348]
|
| 185 |
-
# })
|
| 186 |
-
# elif city == 'Kirkland':
|
| 187 |
-
# map_data = pd.DataFrame({
|
| 188 |
-
# 'latitude': [47.6810],
|
| 189 |
-
# 'longitude': [-122.2087]
|
| 190 |
-
# })
|
| 191 |
-
# elif city == 'Lake Forest Park':
|
| 192 |
-
# map_data = pd.DataFrame({
|
| 193 |
-
# 'latitude': [47.7318],
|
| 194 |
-
# 'longitude': [-122.2764]
|
| 195 |
-
# })
|
| 196 |
-
# elif city == 'Maple Valley':
|
| 197 |
-
# map_data = pd.DataFrame({
|
| 198 |
-
# 'latitude': [47.3610],
|
| 199 |
-
# 'longitude': [-122.0240]
|
| 200 |
-
# })
|
| 201 |
-
# elif city == 'Medina':
|
| 202 |
-
# map_data = pd.DataFrame({
|
| 203 |
-
# 'latitude': [47.6357],
|
| 204 |
-
# 'longitude': [-122.2169]
|
| 205 |
-
# })
|
| 206 |
-
# elif city == 'Mercer Island':
|
| 207 |
-
# map_data = pd.DataFrame({
|
| 208 |
-
# 'latitude': [47.5703],
|
| 209 |
-
# 'longitude': [-122.2264]
|
| 210 |
-
# })
|
| 211 |
-
# elif city == 'Milton':
|
| 212 |
-
# map_data = pd.DataFrame({
|
| 213 |
-
# 'latitude': [47.2335],
|
| 214 |
-
# 'longitude': [-122.2730]
|
| 215 |
-
# })
|
| 216 |
-
# elif city == 'Newcastle':
|
| 217 |
-
# map_data = pd.DataFrame({
|
| 218 |
-
# 'latitude': [47.5477],
|
| 219 |
-
# 'longitude': [-122.1711]
|
| 220 |
-
# })
|
| 221 |
-
# elif city == 'Normandy Park':
|
| 222 |
-
# map_data = pd.DataFrame({
|
| 223 |
-
# 'latitude': [47.4051],
|
| 224 |
-
# 'longitude': [-122.3376]
|
| 225 |
-
# })
|
| 226 |
-
# elif city == 'North Bend':
|
| 227 |
-
# map_data = pd.DataFrame({
|
| 228 |
-
# 'latitude': [47.4904],
|
| 229 |
-
# 'longitude': [-121.7852]
|
| 230 |
-
# })
|
| 231 |
-
# elif city == 'Pacific':
|
| 232 |
-
# map_data = pd.DataFrame({
|
| 233 |
-
# 'latitude': [47.3197],
|
| 234 |
-
# 'longitude': [-122.2786]
|
| 235 |
-
# })
|
| 236 |
-
# elif city == 'Preston':
|
| 237 |
-
# map_data = pd.DataFrame({
|
| 238 |
-
# 'latitude': [47.5420],
|
| 239 |
-
# 'longitude': [-121.9214]
|
| 240 |
-
# })
|
| 241 |
-
# elif city == 'Ravensdale':
|
| 242 |
-
# map_data = pd.DataFrame({
|
| 243 |
-
# 'latitude': [47.3485],
|
| 244 |
-
# 'longitude': [-121.9807]
|
| 245 |
-
# })
|
| 246 |
-
# elif city == 'Redmond':
|
| 247 |
-
# map_data = pd.DataFrame({
|
| 248 |
-
# 'latitude': [47.6734],
|
| 249 |
-
# 'longitude': [-122.1215]
|
| 250 |
-
# })
|
| 251 |
-
# elif city == 'Renton':
|
| 252 |
-
# map_data = pd.DataFrame({
|
| 253 |
-
# 'latitude': [47.4829],
|
| 254 |
-
# 'longitude': [-122.2170]
|
| 255 |
-
# })
|
| 256 |
-
# elif city == 'Sammamish':
|
| 257 |
-
# map_data = pd.DataFrame({
|
| 258 |
-
# 'latitude': [47.6162],
|
| 259 |
-
# 'longitude': [-122.0394]
|
| 260 |
-
# })
|
| 261 |
-
# elif city == 'SeaTac':
|
| 262 |
-
# map_data = pd.DataFrame({
|
| 263 |
-
# 'latitude': [47.4484],
|
| 264 |
-
# 'longitude': [-122.3085]
|
| 265 |
-
# })
|
| 266 |
-
# elif city == 'Shoreline':
|
| 267 |
-
# map_data = pd.DataFrame({
|
| 268 |
-
# 'latitude': [47.7554],
|
| 269 |
-
# 'longitude': [-122.3410]
|
| 270 |
-
# })
|
| 271 |
-
# elif city == 'Skykomish':
|
| 272 |
-
# map_data = pd.DataFrame({
|
| 273 |
-
# 'latitude': [47.7054],
|
| 274 |
-
# 'longitude': [-121.4848]
|
| 275 |
-
# })
|
| 276 |
-
# elif city == 'Snoqualmie':
|
| 277 |
-
# map_data = pd.DataFrame({
|
| 278 |
-
# 'latitude': [47.5410],
|
| 279 |
-
# 'longitude': [-121.8340]
|
| 280 |
-
# })
|
| 281 |
-
# elif city == 'Snoqualmie Pass':
|
| 282 |
-
# map_data = pd.DataFrame({
|
| 283 |
-
# 'latitude': [47.4286],
|
| 284 |
-
# 'longitude': [-121.4420]
|
| 285 |
-
# })
|
| 286 |
-
# elif city == 'Tukwila':
|
| 287 |
-
# map_data = pd.DataFrame({
|
| 288 |
-
# 'latitude': [47.4835],
|
| 289 |
-
# 'longitude': [-122.2585]
|
| 290 |
-
# })
|
| 291 |
-
# elif city == 'Vashon':
|
| 292 |
-
# map_data = pd.DataFrame({
|
| 293 |
-
# 'latitude': [47.4337],
|
| 294 |
-
# 'longitude': [-122.4660]
|
| 295 |
-
# })
|
| 296 |
-
# elif city == 'Woodinville':
|
| 297 |
-
# map_data = pd.DataFrame({
|
| 298 |
-
# 'latitude': [47.7524],
|
| 299 |
-
# 'longitude': [-122.1576]
|
| 300 |
-
# })
|
| 301 |
-
# elif city == 'Yarrow Point':
|
| 302 |
-
# map_data = pd.DataFrame({
|
| 303 |
-
# 'latitude': [47.6348],
|
| 304 |
-
# 'longitude': [-122.2218]
|
| 305 |
-
# })
|
| 306 |
-
|
| 307 |
-
st.map(map_data, zoom=11)
|
|
|
|
| 4 |
import json
|
| 5 |
from utils import create_new_features, normalize, bucketize, init_new_pred
|
| 6 |
|
| 7 |
+
st.set_page_config(layout="wide")
|
| 8 |
+
|
| 9 |
+
st.markdown("""
|
| 10 |
+
<style>
|
| 11 |
+
.scroll-container {
|
| 12 |
+
height: 500px; /* Set the height of the scrollable section */
|
| 13 |
+
overflow-y: scroll;
|
| 14 |
+
padding: 10px;
|
| 15 |
+
border: 1px solid #ccc; /* Optional: Add border to make the scrollable area more visible */
|
| 16 |
+
}
|
| 17 |
+
</style>
|
| 18 |
+
""", unsafe_allow_html=True)
|
| 19 |
+
|
| 20 |
+
# load model and files
|
| 21 |
with open('./trained_model.pkl', 'rb') as file:
|
| 22 |
model = pickle.load(file)
|
| 23 |
with open("./min_dict.json", "r") as f:
|
|
|
|
| 27 |
with open("./cities_geo.json", "r") as f:
|
| 28 |
cities_geo = json.load(f)
|
| 29 |
|
|
|
|
|
|
|
| 30 |
# Create two columns: one for the city and one for the map
|
| 31 |
col1, col2 = st.columns([1, 2]) # Adjust the width ratios as needed
|
| 32 |
|
| 33 |
with col1:
|
| 34 |
st.subheader('Features')
|
| 35 |
+
|
| 36 |
+
with st.container():
|
| 37 |
+
st.markdown('<div class="scroll-container">', unsafe_allow_html=True)
|
| 38 |
+
|
| 39 |
+
# Create two columns for City and Waterfront
|
| 40 |
+
col3, col4 = st.columns(2)
|
| 41 |
+
|
| 42 |
+
# City dropdown in the first column
|
| 43 |
+
with col3:
|
| 44 |
+
city = st.selectbox('City', list(cities_geo.keys()))
|
| 45 |
+
|
| 46 |
+
# Waterfront checkbox in the second column
|
| 47 |
+
with col4:
|
| 48 |
+
waterfront = st.checkbox('Waterfront', value=False)
|
| 49 |
+
|
| 50 |
+
# city = st.selectbox('City', list(cities_geo.keys())) # Display city dropdown in the first column
|
| 51 |
+
# waterfront = st.checkbox('Waterfront', value=False)
|
| 52 |
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=3)
|
| 53 |
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=2)
|
| 54 |
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=1000)
|
|
|
|
| 60 |
sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=0)
|
| 61 |
yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=2000)
|
| 62 |
yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=2010)
|
| 63 |
+
|
| 64 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 65 |
|
| 66 |
new_pred = init_new_pred()
|
| 67 |
new_pred['bedrooms'] = bedrooms
|
|
|
|
| 93 |
price_placeholder = st.empty()
|
| 94 |
price_placeholder.markdown(
|
| 95 |
f"<h1 style='font-size: 24px;'>Predicted Price: ${predicted_price[0][0]:,.2f}</h1>",
|
| 96 |
+
unsafe_allow_html=True)
|
|
|
|
| 97 |
|
| 98 |
map_data = pd.DataFrame(cities_geo[city])
|
| 99 |
+
st.map(map_data, zoom=11)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|