Spaces:
Paused
Paused
| import streamlit as st | |
| import pandas as pd | |
| import pickle | |
| from utils import create_new_features, normalize, init_new_pred | |
| with open('./trained_model.pkl', 'rb') as file: | |
| model = pickle.load(file) | |
| # Placeholder for displaying the predicted price at the top | |
| price_placeholder = st.empty() | |
| # Define min and max values from the dictionaries | |
| min_dict = { | |
| 'bedrooms': 0, | |
| 'bathrooms': 0, | |
| 'sqft_living': 370, | |
| 'sqft_lot': 638, | |
| 'floors': 1, | |
| 'waterfront': 0, | |
| 'view': 0, | |
| 'condition': 1, | |
| 'sqft_above': 370, | |
| 'sqft_basement': 0, | |
| 'yr_built': 1900, | |
| 'yr_renovated': 0, | |
| 'house_age': 0, | |
| 'years_since_renovation': 0 | |
| } | |
| max_dict = { | |
| 'bedrooms': 9, | |
| 'bathrooms': 8, | |
| 'sqft_living': 13540, | |
| 'sqft_lot': 1074218, | |
| 'floors': 3, | |
| 'waterfront': 1, | |
| 'view': 4, | |
| 'condition': 5, | |
| 'sqft_above': 9410, | |
| 'sqft_basement': 4820, | |
| 'yr_built': 2014, | |
| 'yr_renovated': 2014, | |
| 'house_age': 114, | |
| 'years_since_renovation': 2014 | |
| } | |
| # Create sliders for each item in the dictionaries | |
| bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms']) | |
| bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms']) | |
| sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living']) | |
| sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=min_dict['sqft_lot']) | |
| floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=min_dict['floors']) | |
| waterfront = st.slider('Waterfront', min_value=min_dict['waterfront'], max_value=max_dict['waterfront'], value=min_dict['waterfront']) | |
| view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=min_dict['view']) | |
| condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=min_dict['condition']) | |
| sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=min_dict['sqft_above']) | |
| sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=min_dict['sqft_basement']) | |
| yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=min_dict['yr_built']) | |
| yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=min_dict['yr_renovated']) | |
| if (bedrooms != min_dict['bedrooms'] or | |
| bathrooms != min_dict['bathrooms'] or | |
| sqft_living != min_dict['sqft_living'] or | |
| sqft_lot != min_dict['sqft_lot'] or | |
| floors != min_dict['floors'] or | |
| waterfront != min_dict['waterfront'] or | |
| view != min_dict['view'] or | |
| condition != min_dict['condition'] or | |
| sqft_above != min_dict['sqft_above'] or | |
| sqft_basement != min_dict['sqft_basement'] or | |
| yr_built != min_dict['yr_built'] or | |
| yr_renovated != min_dict['yr_renovated']): | |
| new_pred = init_new_pred() | |
| new_pred['bedrooms'] = bedrooms | |
| new_pred['bathrooms'] = bathrooms | |
| new_pred['sqft_living'] = sqft_living | |
| new_pred['sqft_lot'] = sqft_lot | |
| new_pred['floors'] = floors | |
| new_pred['waterfront'] = waterfront | |
| new_pred['view'] = view | |
| new_pred['condition'] = condition | |
| new_pred['sqft_above'] = sqft_above | |
| new_pred['sqft_basement'] = sqft_basement | |
| new_pred['yr_built'] = yr_built | |
| new_pred['yr_renovated'] = yr_renovated | |
| new_pred['city_Bellevue'] = 1 | |
| # Process the prediction | |
| new_pred = pd.DataFrame([new_pred]) | |
| new_pred = create_new_features(new_pred) | |
| new_pred = normalize(new_pred) | |
| # Predict the price | |
| predicted_price = model.predict(new_pred) | |
| # Display the predicted price at the top of the app | |
| price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}") | |