Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +77 -0
- ev_fiyat_modeli.pkl +3 -0
- kc_house_data.csv +0 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
import streamlit as st
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.pipeline import Pipeline
|
8 |
+
from sklearn.compose import ColumnTransformer
|
9 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
10 |
+
|
11 |
+
# Veri Setini Yükleyin
|
12 |
+
df = pd.read_csv('kc_house_data.csv')
|
13 |
+
|
14 |
+
# Girdileri ve çıktıları ayırma
|
15 |
+
X = df.drop('price', axis=1)
|
16 |
+
y = df[['price']]
|
17 |
+
|
18 |
+
# Eğitim ve test setlerine ayırma
|
19 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
20 |
+
|
21 |
+
# Ön işleme ve model pipeline'ı oluşturma
|
22 |
+
preprocessor = ColumnTransformer(transformers=[
|
23 |
+
('num', StandardScaler(), ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'sqft_living15', 'sqft_lot15']),
|
24 |
+
('cat', OneHotEncoder(), ['zipcode'])
|
25 |
+
])
|
26 |
+
|
27 |
+
model = LinearRegression()
|
28 |
+
pipe = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
|
29 |
+
pipe.fit(X_train, y_train)
|
30 |
+
|
31 |
+
# Modeli kaydet
|
32 |
+
with open('ev_fiyat_modeli.pkl', 'wb') as f:
|
33 |
+
pickle.dump(pipe, f)
|
34 |
+
|
35 |
+
# Modeli yükle
|
36 |
+
with open('ev_fiyat_modeli.pkl', 'rb') as f:
|
37 |
+
loaded_model = pickle.load(f)
|
38 |
+
|
39 |
+
# Tahmin fonksiyonu
|
40 |
+
def predict_price(bedrooms, bathrooms, sqft_living, sqft_lot, floors, sqft_above, sqft_basement, yr_built, yr_renovated, sqft_living15, sqft_lot15, zipcode):
|
41 |
+
input_data = pd.DataFrame({
|
42 |
+
'bedrooms': [bedrooms],
|
43 |
+
'bathrooms': [bathrooms],
|
44 |
+
'sqft_living': [sqft_living],
|
45 |
+
'sqft_lot': [sqft_lot],
|
46 |
+
'floors': [floors],
|
47 |
+
'sqft_basement': [sqft_basement],
|
48 |
+
'sqft_above': [sqft_above],}
|
49 |
+
'yr_built': [yr_built],
|
50 |
+
'yr_renovated': [yr_renovated],
|
51 |
+
'sqft_living15': [sqft_living15],
|
52 |
+
'sqft_lot15': [sqft_lot15],
|
53 |
+
'zipcode': [zipcode]
|
54 |
+
})
|
55 |
+
prediction = loaded_model.predict(input_data)[0][0]
|
56 |
+
return max(0, prediction) # Negatif değerleri sıfıra eşitle
|
57 |
+
|
58 |
+
# Streamlit arayüzü
|
59 |
+
st.title("Home Price Estimate")
|
60 |
+
st.write("Enter the features of the house")
|
61 |
+
|
62 |
+
bedrooms = st.number_input("Number of Attack Rooms", 1, 10)
|
63 |
+
bathrooms = st.number_input("Number of Bathrooms", 1, 5)
|
64 |
+
sqft_living = st.number_input("Metrekare (Yaşam Alanı)", 50, 10000)
|
65 |
+
sqft_lot = st.number_input("Square Meters (Living Space)", 50, 50000)
|
66 |
+
floors = st.number_input("Number of Floors", 1, 3)
|
67 |
+
sqft_above = st.number_input("Square Meters (Above Ground)", 50, 10000)
|
68 |
+
sqft_basement = st.number_input("Square Meters (Underground)", 0, 5000)
|
69 |
+
yr_built = st.number_input("Year of Construction", 1900, 2022)
|
70 |
+
yr_renovated = st.number_input("Year of Renovation", 0, 2022)
|
71 |
+
sqft_living15 = st.number_input("Nearby Square Meters (Living Space)", 50, 10000)
|
72 |
+
sqft_lot15 = st.number_input("Nearby Square Meters (Land Area)", 50, 50000)
|
73 |
+
zipcode = st.selectbox("Postal code", df['zipcode'].unique())
|
74 |
+
|
75 |
+
if st.button("Set an estimated price"):
|
76 |
+
pred = predict_price(bedrooms, bathrooms, sqft_living, sqft_lot, floors, sqft_above, sqft_basement, yr_built, yr_renovated, sqft_living15, sqft_lot15, zipcode)
|
77 |
+
st.write("Estimated Price: $", round(pred, 2))
|
ev_fiyat_modeli.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09ac548111585d3787d50bc50c056ccaf21841fdb7f24a504a55eaed124dea9d
|
3 |
+
size 3887
|
kc_house_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
scikit-learn
|
4 |
+
streamlit
|