Gregniuki commited on
Commit
ea43fca
·
verified ·
1 Parent(s): 610ea2a

Delete model/ecapa_tdnn.py

Browse files
Files changed (1) hide show
  1. model/ecapa_tdnn.py +0 -268
model/ecapa_tdnn.py DELETED
@@ -1,268 +0,0 @@
1
- # just for speaker similarity evaluation, third-party code
2
-
3
- # From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
4
- # part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
5
-
6
- import os
7
- import torch
8
- import torch.nn as nn
9
- import torch.nn.functional as F
10
-
11
-
12
- ''' Res2Conv1d + BatchNorm1d + ReLU
13
- '''
14
-
15
- class Res2Conv1dReluBn(nn.Module):
16
- '''
17
- in_channels == out_channels == channels
18
- '''
19
-
20
- def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
21
- super().__init__()
22
- assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
23
- self.scale = scale
24
- self.width = channels // scale
25
- self.nums = scale if scale == 1 else scale - 1
26
-
27
- self.convs = []
28
- self.bns = []
29
- for i in range(self.nums):
30
- self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
31
- self.bns.append(nn.BatchNorm1d(self.width))
32
- self.convs = nn.ModuleList(self.convs)
33
- self.bns = nn.ModuleList(self.bns)
34
-
35
- def forward(self, x):
36
- out = []
37
- spx = torch.split(x, self.width, 1)
38
- for i in range(self.nums):
39
- if i == 0:
40
- sp = spx[i]
41
- else:
42
- sp = sp + spx[i]
43
- # Order: conv -> relu -> bn
44
- sp = self.convs[i](sp)
45
- sp = self.bns[i](F.relu(sp))
46
- out.append(sp)
47
- if self.scale != 1:
48
- out.append(spx[self.nums])
49
- out = torch.cat(out, dim=1)
50
-
51
- return out
52
-
53
-
54
- ''' Conv1d + BatchNorm1d + ReLU
55
- '''
56
-
57
- class Conv1dReluBn(nn.Module):
58
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
59
- super().__init__()
60
- self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
61
- self.bn = nn.BatchNorm1d(out_channels)
62
-
63
- def forward(self, x):
64
- return self.bn(F.relu(self.conv(x)))
65
-
66
-
67
- ''' The SE connection of 1D case.
68
- '''
69
-
70
- class SE_Connect(nn.Module):
71
- def __init__(self, channels, se_bottleneck_dim=128):
72
- super().__init__()
73
- self.linear1 = nn.Linear(channels, se_bottleneck_dim)
74
- self.linear2 = nn.Linear(se_bottleneck_dim, channels)
75
-
76
- def forward(self, x):
77
- out = x.mean(dim=2)
78
- out = F.relu(self.linear1(out))
79
- out = torch.sigmoid(self.linear2(out))
80
- out = x * out.unsqueeze(2)
81
-
82
- return out
83
-
84
-
85
- ''' SE-Res2Block of the ECAPA-TDNN architecture.
86
- '''
87
-
88
- # def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
89
- # return nn.Sequential(
90
- # Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
91
- # Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
92
- # Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
93
- # SE_Connect(channels)
94
- # )
95
-
96
- class SE_Res2Block(nn.Module):
97
- def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
98
- super().__init__()
99
- self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
100
- self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
101
- self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
102
- self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
103
-
104
- self.shortcut = None
105
- if in_channels != out_channels:
106
- self.shortcut = nn.Conv1d(
107
- in_channels=in_channels,
108
- out_channels=out_channels,
109
- kernel_size=1,
110
- )
111
-
112
- def forward(self, x):
113
- residual = x
114
- if self.shortcut:
115
- residual = self.shortcut(x)
116
-
117
- x = self.Conv1dReluBn1(x)
118
- x = self.Res2Conv1dReluBn(x)
119
- x = self.Conv1dReluBn2(x)
120
- x = self.SE_Connect(x)
121
-
122
- return x + residual
123
-
124
-
125
- ''' Attentive weighted mean and standard deviation pooling.
126
- '''
127
-
128
- class AttentiveStatsPool(nn.Module):
129
- def __init__(self, in_dim, attention_channels=128, global_context_att=False):
130
- super().__init__()
131
- self.global_context_att = global_context_att
132
-
133
- # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
134
- if global_context_att:
135
- self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
136
- else:
137
- self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
138
- self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
139
-
140
- def forward(self, x):
141
-
142
- if self.global_context_att:
143
- context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
144
- context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
145
- x_in = torch.cat((x, context_mean, context_std), dim=1)
146
- else:
147
- x_in = x
148
-
149
- # DON'T use ReLU here! In experiments, I find ReLU hard to converge.
150
- alpha = torch.tanh(self.linear1(x_in))
151
- # alpha = F.relu(self.linear1(x_in))
152
- alpha = torch.softmax(self.linear2(alpha), dim=2)
153
- mean = torch.sum(alpha * x, dim=2)
154
- residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2
155
- std = torch.sqrt(residuals.clamp(min=1e-9))
156
- return torch.cat([mean, std], dim=1)
157
-
158
-
159
- class ECAPA_TDNN(nn.Module):
160
- def __init__(self, feat_dim=80, channels=512, emb_dim=192, global_context_att=False,
161
- feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
162
- super().__init__()
163
-
164
- self.feat_type = feat_type
165
- self.feature_selection = feature_selection
166
- self.update_extract = update_extract
167
- self.sr = sr
168
-
169
- torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
170
- try:
171
- local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
172
- self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source='local', config_path=config_path)
173
- except:
174
- self.feature_extract = torch.hub.load('s3prl/s3prl', feat_type)
175
-
176
- if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"):
177
- self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
178
- if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"):
179
- self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
180
-
181
- self.feat_num = self.get_feat_num()
182
- self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
183
-
184
- if feat_type != 'fbank' and feat_type != 'mfcc':
185
- freeze_list = ['final_proj', 'label_embs_concat', 'mask_emb', 'project_q', 'quantizer']
186
- for name, param in self.feature_extract.named_parameters():
187
- for freeze_val in freeze_list:
188
- if freeze_val in name:
189
- param.requires_grad = False
190
- break
191
-
192
- if not self.update_extract:
193
- for param in self.feature_extract.parameters():
194
- param.requires_grad = False
195
-
196
- self.instance_norm = nn.InstanceNorm1d(feat_dim)
197
- # self.channels = [channels] * 4 + [channels * 3]
198
- self.channels = [channels] * 4 + [1536]
199
-
200
- self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
201
- self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128)
202
- self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128)
203
- self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128)
204
-
205
- # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
206
- cat_channels = channels * 3
207
- self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
208
- self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att)
209
- self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
210
- self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
211
-
212
-
213
- def get_feat_num(self):
214
- self.feature_extract.eval()
215
- wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
216
- with torch.no_grad():
217
- features = self.feature_extract(wav)
218
- select_feature = features[self.feature_selection]
219
- if isinstance(select_feature, (list, tuple)):
220
- return len(select_feature)
221
- else:
222
- return 1
223
-
224
- def get_feat(self, x):
225
- if self.update_extract:
226
- x = self.feature_extract([sample for sample in x])
227
- else:
228
- with torch.no_grad():
229
- if self.feat_type == 'fbank' or self.feat_type == 'mfcc':
230
- x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
231
- else:
232
- x = self.feature_extract([sample for sample in x])
233
-
234
- if self.feat_type == 'fbank':
235
- x = x.log()
236
-
237
- if self.feat_type != "fbank" and self.feat_type != "mfcc":
238
- x = x[self.feature_selection]
239
- if isinstance(x, (list, tuple)):
240
- x = torch.stack(x, dim=0)
241
- else:
242
- x = x.unsqueeze(0)
243
- norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
244
- x = (norm_weights * x).sum(dim=0)
245
- x = torch.transpose(x, 1, 2) + 1e-6
246
-
247
- x = self.instance_norm(x)
248
- return x
249
-
250
- def forward(self, x):
251
- x = self.get_feat(x)
252
-
253
- out1 = self.layer1(x)
254
- out2 = self.layer2(out1)
255
- out3 = self.layer3(out2)
256
- out4 = self.layer4(out3)
257
-
258
- out = torch.cat([out2, out3, out4], dim=1)
259
- out = F.relu(self.conv(out))
260
- out = self.bn(self.pooling(out))
261
- out = self.linear(out)
262
-
263
- return out
264
-
265
-
266
- def ECAPA_TDNN_SMALL(feat_dim, emb_dim=256, feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
267
- return ECAPA_TDNN(feat_dim=feat_dim, channels=512, emb_dim=emb_dim,
268
- feat_type=feat_type, sr=sr, feature_selection=feature_selection, update_extract=update_extract, config_path=config_path)