Spaces:
Running
Running
Delete model/ecapa_tdnn.py
Browse files- model/ecapa_tdnn.py +0 -268
model/ecapa_tdnn.py
DELETED
|
@@ -1,268 +0,0 @@
|
|
| 1 |
-
# just for speaker similarity evaluation, third-party code
|
| 2 |
-
|
| 3 |
-
# From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
|
| 4 |
-
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
| 5 |
-
|
| 6 |
-
import os
|
| 7 |
-
import torch
|
| 8 |
-
import torch.nn as nn
|
| 9 |
-
import torch.nn.functional as F
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
''' Res2Conv1d + BatchNorm1d + ReLU
|
| 13 |
-
'''
|
| 14 |
-
|
| 15 |
-
class Res2Conv1dReluBn(nn.Module):
|
| 16 |
-
'''
|
| 17 |
-
in_channels == out_channels == channels
|
| 18 |
-
'''
|
| 19 |
-
|
| 20 |
-
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
|
| 21 |
-
super().__init__()
|
| 22 |
-
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
| 23 |
-
self.scale = scale
|
| 24 |
-
self.width = channels // scale
|
| 25 |
-
self.nums = scale if scale == 1 else scale - 1
|
| 26 |
-
|
| 27 |
-
self.convs = []
|
| 28 |
-
self.bns = []
|
| 29 |
-
for i in range(self.nums):
|
| 30 |
-
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
|
| 31 |
-
self.bns.append(nn.BatchNorm1d(self.width))
|
| 32 |
-
self.convs = nn.ModuleList(self.convs)
|
| 33 |
-
self.bns = nn.ModuleList(self.bns)
|
| 34 |
-
|
| 35 |
-
def forward(self, x):
|
| 36 |
-
out = []
|
| 37 |
-
spx = torch.split(x, self.width, 1)
|
| 38 |
-
for i in range(self.nums):
|
| 39 |
-
if i == 0:
|
| 40 |
-
sp = spx[i]
|
| 41 |
-
else:
|
| 42 |
-
sp = sp + spx[i]
|
| 43 |
-
# Order: conv -> relu -> bn
|
| 44 |
-
sp = self.convs[i](sp)
|
| 45 |
-
sp = self.bns[i](F.relu(sp))
|
| 46 |
-
out.append(sp)
|
| 47 |
-
if self.scale != 1:
|
| 48 |
-
out.append(spx[self.nums])
|
| 49 |
-
out = torch.cat(out, dim=1)
|
| 50 |
-
|
| 51 |
-
return out
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
''' Conv1d + BatchNorm1d + ReLU
|
| 55 |
-
'''
|
| 56 |
-
|
| 57 |
-
class Conv1dReluBn(nn.Module):
|
| 58 |
-
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
|
| 59 |
-
super().__init__()
|
| 60 |
-
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
| 61 |
-
self.bn = nn.BatchNorm1d(out_channels)
|
| 62 |
-
|
| 63 |
-
def forward(self, x):
|
| 64 |
-
return self.bn(F.relu(self.conv(x)))
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
''' The SE connection of 1D case.
|
| 68 |
-
'''
|
| 69 |
-
|
| 70 |
-
class SE_Connect(nn.Module):
|
| 71 |
-
def __init__(self, channels, se_bottleneck_dim=128):
|
| 72 |
-
super().__init__()
|
| 73 |
-
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
| 74 |
-
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
| 75 |
-
|
| 76 |
-
def forward(self, x):
|
| 77 |
-
out = x.mean(dim=2)
|
| 78 |
-
out = F.relu(self.linear1(out))
|
| 79 |
-
out = torch.sigmoid(self.linear2(out))
|
| 80 |
-
out = x * out.unsqueeze(2)
|
| 81 |
-
|
| 82 |
-
return out
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
''' SE-Res2Block of the ECAPA-TDNN architecture.
|
| 86 |
-
'''
|
| 87 |
-
|
| 88 |
-
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
| 89 |
-
# return nn.Sequential(
|
| 90 |
-
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
|
| 91 |
-
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
|
| 92 |
-
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
|
| 93 |
-
# SE_Connect(channels)
|
| 94 |
-
# )
|
| 95 |
-
|
| 96 |
-
class SE_Res2Block(nn.Module):
|
| 97 |
-
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
|
| 98 |
-
super().__init__()
|
| 99 |
-
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 100 |
-
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
|
| 101 |
-
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 102 |
-
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
|
| 103 |
-
|
| 104 |
-
self.shortcut = None
|
| 105 |
-
if in_channels != out_channels:
|
| 106 |
-
self.shortcut = nn.Conv1d(
|
| 107 |
-
in_channels=in_channels,
|
| 108 |
-
out_channels=out_channels,
|
| 109 |
-
kernel_size=1,
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
def forward(self, x):
|
| 113 |
-
residual = x
|
| 114 |
-
if self.shortcut:
|
| 115 |
-
residual = self.shortcut(x)
|
| 116 |
-
|
| 117 |
-
x = self.Conv1dReluBn1(x)
|
| 118 |
-
x = self.Res2Conv1dReluBn(x)
|
| 119 |
-
x = self.Conv1dReluBn2(x)
|
| 120 |
-
x = self.SE_Connect(x)
|
| 121 |
-
|
| 122 |
-
return x + residual
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
''' Attentive weighted mean and standard deviation pooling.
|
| 126 |
-
'''
|
| 127 |
-
|
| 128 |
-
class AttentiveStatsPool(nn.Module):
|
| 129 |
-
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
|
| 130 |
-
super().__init__()
|
| 131 |
-
self.global_context_att = global_context_att
|
| 132 |
-
|
| 133 |
-
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
|
| 134 |
-
if global_context_att:
|
| 135 |
-
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
|
| 136 |
-
else:
|
| 137 |
-
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
|
| 138 |
-
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
|
| 139 |
-
|
| 140 |
-
def forward(self, x):
|
| 141 |
-
|
| 142 |
-
if self.global_context_att:
|
| 143 |
-
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
| 144 |
-
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
|
| 145 |
-
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
| 146 |
-
else:
|
| 147 |
-
x_in = x
|
| 148 |
-
|
| 149 |
-
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
|
| 150 |
-
alpha = torch.tanh(self.linear1(x_in))
|
| 151 |
-
# alpha = F.relu(self.linear1(x_in))
|
| 152 |
-
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
| 153 |
-
mean = torch.sum(alpha * x, dim=2)
|
| 154 |
-
residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2
|
| 155 |
-
std = torch.sqrt(residuals.clamp(min=1e-9))
|
| 156 |
-
return torch.cat([mean, std], dim=1)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
class ECAPA_TDNN(nn.Module):
|
| 160 |
-
def __init__(self, feat_dim=80, channels=512, emb_dim=192, global_context_att=False,
|
| 161 |
-
feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
|
| 162 |
-
super().__init__()
|
| 163 |
-
|
| 164 |
-
self.feat_type = feat_type
|
| 165 |
-
self.feature_selection = feature_selection
|
| 166 |
-
self.update_extract = update_extract
|
| 167 |
-
self.sr = sr
|
| 168 |
-
|
| 169 |
-
torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
|
| 170 |
-
try:
|
| 171 |
-
local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
|
| 172 |
-
self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source='local', config_path=config_path)
|
| 173 |
-
except:
|
| 174 |
-
self.feature_extract = torch.hub.load('s3prl/s3prl', feat_type)
|
| 175 |
-
|
| 176 |
-
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"):
|
| 177 |
-
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
|
| 178 |
-
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"):
|
| 179 |
-
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
|
| 180 |
-
|
| 181 |
-
self.feat_num = self.get_feat_num()
|
| 182 |
-
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
|
| 183 |
-
|
| 184 |
-
if feat_type != 'fbank' and feat_type != 'mfcc':
|
| 185 |
-
freeze_list = ['final_proj', 'label_embs_concat', 'mask_emb', 'project_q', 'quantizer']
|
| 186 |
-
for name, param in self.feature_extract.named_parameters():
|
| 187 |
-
for freeze_val in freeze_list:
|
| 188 |
-
if freeze_val in name:
|
| 189 |
-
param.requires_grad = False
|
| 190 |
-
break
|
| 191 |
-
|
| 192 |
-
if not self.update_extract:
|
| 193 |
-
for param in self.feature_extract.parameters():
|
| 194 |
-
param.requires_grad = False
|
| 195 |
-
|
| 196 |
-
self.instance_norm = nn.InstanceNorm1d(feat_dim)
|
| 197 |
-
# self.channels = [channels] * 4 + [channels * 3]
|
| 198 |
-
self.channels = [channels] * 4 + [1536]
|
| 199 |
-
|
| 200 |
-
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
|
| 201 |
-
self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128)
|
| 202 |
-
self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128)
|
| 203 |
-
self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128)
|
| 204 |
-
|
| 205 |
-
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
|
| 206 |
-
cat_channels = channels * 3
|
| 207 |
-
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
|
| 208 |
-
self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att)
|
| 209 |
-
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
|
| 210 |
-
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
def get_feat_num(self):
|
| 214 |
-
self.feature_extract.eval()
|
| 215 |
-
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
|
| 216 |
-
with torch.no_grad():
|
| 217 |
-
features = self.feature_extract(wav)
|
| 218 |
-
select_feature = features[self.feature_selection]
|
| 219 |
-
if isinstance(select_feature, (list, tuple)):
|
| 220 |
-
return len(select_feature)
|
| 221 |
-
else:
|
| 222 |
-
return 1
|
| 223 |
-
|
| 224 |
-
def get_feat(self, x):
|
| 225 |
-
if self.update_extract:
|
| 226 |
-
x = self.feature_extract([sample for sample in x])
|
| 227 |
-
else:
|
| 228 |
-
with torch.no_grad():
|
| 229 |
-
if self.feat_type == 'fbank' or self.feat_type == 'mfcc':
|
| 230 |
-
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
|
| 231 |
-
else:
|
| 232 |
-
x = self.feature_extract([sample for sample in x])
|
| 233 |
-
|
| 234 |
-
if self.feat_type == 'fbank':
|
| 235 |
-
x = x.log()
|
| 236 |
-
|
| 237 |
-
if self.feat_type != "fbank" and self.feat_type != "mfcc":
|
| 238 |
-
x = x[self.feature_selection]
|
| 239 |
-
if isinstance(x, (list, tuple)):
|
| 240 |
-
x = torch.stack(x, dim=0)
|
| 241 |
-
else:
|
| 242 |
-
x = x.unsqueeze(0)
|
| 243 |
-
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
|
| 244 |
-
x = (norm_weights * x).sum(dim=0)
|
| 245 |
-
x = torch.transpose(x, 1, 2) + 1e-6
|
| 246 |
-
|
| 247 |
-
x = self.instance_norm(x)
|
| 248 |
-
return x
|
| 249 |
-
|
| 250 |
-
def forward(self, x):
|
| 251 |
-
x = self.get_feat(x)
|
| 252 |
-
|
| 253 |
-
out1 = self.layer1(x)
|
| 254 |
-
out2 = self.layer2(out1)
|
| 255 |
-
out3 = self.layer3(out2)
|
| 256 |
-
out4 = self.layer4(out3)
|
| 257 |
-
|
| 258 |
-
out = torch.cat([out2, out3, out4], dim=1)
|
| 259 |
-
out = F.relu(self.conv(out))
|
| 260 |
-
out = self.bn(self.pooling(out))
|
| 261 |
-
out = self.linear(out)
|
| 262 |
-
|
| 263 |
-
return out
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
def ECAPA_TDNN_SMALL(feat_dim, emb_dim=256, feat_type='wavlm_large', sr=16000, feature_selection="hidden_states", update_extract=False, config_path=None):
|
| 267 |
-
return ECAPA_TDNN(feat_dim=feat_dim, channels=512, emb_dim=emb_dim,
|
| 268 |
-
feat_type=feat_type, sr=sr, feature_selection=feature_selection, update_extract=update_extract, config_path=config_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|