Spaces:
Running
Running
Delete model/cfm.py
Browse files- model/cfm.py +0 -285
model/cfm.py
DELETED
@@ -1,285 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
ein notation:
|
3 |
-
b - batch
|
4 |
-
n - sequence
|
5 |
-
nt - text sequence
|
6 |
-
nw - raw wave length
|
7 |
-
d - dimension
|
8 |
-
"""
|
9 |
-
|
10 |
-
from __future__ import annotations
|
11 |
-
|
12 |
-
from random import random
|
13 |
-
from typing import Callable
|
14 |
-
|
15 |
-
import torch
|
16 |
-
import torch.nn.functional as F
|
17 |
-
from torch import nn
|
18 |
-
from torch.nn.utils.rnn import pad_sequence
|
19 |
-
from torchdiffeq import odeint
|
20 |
-
|
21 |
-
from f5_tts.model.modules import MelSpec
|
22 |
-
from f5_tts.model.utils import (
|
23 |
-
default,
|
24 |
-
exists,
|
25 |
-
lens_to_mask,
|
26 |
-
list_str_to_idx,
|
27 |
-
list_str_to_tensor,
|
28 |
-
mask_from_frac_lengths,
|
29 |
-
)
|
30 |
-
|
31 |
-
|
32 |
-
class CFM(nn.Module):
|
33 |
-
def __init__(
|
34 |
-
self,
|
35 |
-
transformer: nn.Module,
|
36 |
-
sigma=0.0,
|
37 |
-
odeint_kwargs: dict = dict(
|
38 |
-
# atol = 1e-5,
|
39 |
-
# rtol = 1e-5,
|
40 |
-
method="euler" # 'midpoint'
|
41 |
-
),
|
42 |
-
audio_drop_prob=0.3,
|
43 |
-
cond_drop_prob=0.2,
|
44 |
-
num_channels=None,
|
45 |
-
mel_spec_module: nn.Module | None = None,
|
46 |
-
mel_spec_kwargs: dict = dict(),
|
47 |
-
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
|
48 |
-
vocab_char_map: dict[str:int] | None = None,
|
49 |
-
):
|
50 |
-
super().__init__()
|
51 |
-
|
52 |
-
self.frac_lengths_mask = frac_lengths_mask
|
53 |
-
|
54 |
-
# mel spec
|
55 |
-
self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
|
56 |
-
num_channels = default(num_channels, self.mel_spec.n_mel_channels)
|
57 |
-
self.num_channels = num_channels
|
58 |
-
|
59 |
-
# classifier-free guidance
|
60 |
-
self.audio_drop_prob = audio_drop_prob
|
61 |
-
self.cond_drop_prob = cond_drop_prob
|
62 |
-
|
63 |
-
# transformer
|
64 |
-
self.transformer = transformer
|
65 |
-
dim = transformer.dim
|
66 |
-
self.dim = dim
|
67 |
-
|
68 |
-
# conditional flow related
|
69 |
-
self.sigma = sigma
|
70 |
-
|
71 |
-
# sampling related
|
72 |
-
self.odeint_kwargs = odeint_kwargs
|
73 |
-
|
74 |
-
# vocab map for tokenization
|
75 |
-
self.vocab_char_map = vocab_char_map
|
76 |
-
|
77 |
-
@property
|
78 |
-
def device(self):
|
79 |
-
return next(self.parameters()).device
|
80 |
-
|
81 |
-
@torch.no_grad()
|
82 |
-
def sample(
|
83 |
-
self,
|
84 |
-
cond: float["b n d"] | float["b nw"], # noqa: F722
|
85 |
-
text: int["b nt"] | list[str], # noqa: F722
|
86 |
-
duration: int | int["b"], # noqa: F821
|
87 |
-
*,
|
88 |
-
lens: int["b"] | None = None, # noqa: F821
|
89 |
-
steps=32,
|
90 |
-
cfg_strength=1.0,
|
91 |
-
sway_sampling_coef=None,
|
92 |
-
seed: int | None = None,
|
93 |
-
max_duration=4096,
|
94 |
-
vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None, # noqa: F722
|
95 |
-
no_ref_audio=False,
|
96 |
-
duplicate_test=False,
|
97 |
-
t_inter=0.1,
|
98 |
-
edit_mask=None,
|
99 |
-
):
|
100 |
-
self.eval()
|
101 |
-
# raw wave
|
102 |
-
|
103 |
-
if cond.ndim == 2:
|
104 |
-
cond = self.mel_spec(cond)
|
105 |
-
cond = cond.permute(0, 2, 1)
|
106 |
-
assert cond.shape[-1] == self.num_channels
|
107 |
-
|
108 |
-
cond = cond.to(next(self.parameters()).dtype)
|
109 |
-
|
110 |
-
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
111 |
-
if not exists(lens):
|
112 |
-
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
|
113 |
-
|
114 |
-
# text
|
115 |
-
|
116 |
-
if isinstance(text, list):
|
117 |
-
if exists(self.vocab_char_map):
|
118 |
-
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
119 |
-
else:
|
120 |
-
text = list_str_to_tensor(text).to(device)
|
121 |
-
assert text.shape[0] == batch
|
122 |
-
|
123 |
-
if exists(text):
|
124 |
-
text_lens = (text != -1).sum(dim=-1)
|
125 |
-
lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
|
126 |
-
|
127 |
-
# duration
|
128 |
-
|
129 |
-
cond_mask = lens_to_mask(lens)
|
130 |
-
if edit_mask is not None:
|
131 |
-
cond_mask = cond_mask & edit_mask
|
132 |
-
|
133 |
-
if isinstance(duration, int):
|
134 |
-
duration = torch.full((batch,), duration, device=device, dtype=torch.long)
|
135 |
-
|
136 |
-
duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
|
137 |
-
duration = duration.clamp(max=max_duration)
|
138 |
-
max_duration = duration.amax()
|
139 |
-
|
140 |
-
# duplicate test corner for inner time step oberservation
|
141 |
-
if duplicate_test:
|
142 |
-
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
|
143 |
-
|
144 |
-
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0)
|
145 |
-
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False)
|
146 |
-
cond_mask = cond_mask.unsqueeze(-1)
|
147 |
-
step_cond = torch.where(
|
148 |
-
cond_mask, cond, torch.zeros_like(cond)
|
149 |
-
) # allow direct control (cut cond audio) with lens passed in
|
150 |
-
|
151 |
-
if batch > 1:
|
152 |
-
mask = lens_to_mask(duration)
|
153 |
-
else: # save memory and speed up, as single inference need no mask currently
|
154 |
-
mask = None
|
155 |
-
|
156 |
-
# test for no ref audio
|
157 |
-
if no_ref_audio:
|
158 |
-
cond = torch.zeros_like(cond)
|
159 |
-
|
160 |
-
# neural ode
|
161 |
-
|
162 |
-
def fn(t, x):
|
163 |
-
# at each step, conditioning is fixed
|
164 |
-
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
165 |
-
|
166 |
-
# predict flow
|
167 |
-
pred = self.transformer(
|
168 |
-
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
|
169 |
-
)
|
170 |
-
if cfg_strength < 1e-5:
|
171 |
-
return pred
|
172 |
-
|
173 |
-
null_pred = self.transformer(
|
174 |
-
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
|
175 |
-
)
|
176 |
-
return pred + (pred - null_pred) * cfg_strength
|
177 |
-
|
178 |
-
# noise input
|
179 |
-
# to make sure batch inference result is same with different batch size, and for sure single inference
|
180 |
-
# still some difference maybe due to convolutional layers
|
181 |
-
y0 = []
|
182 |
-
for dur in duration:
|
183 |
-
if exists(seed):
|
184 |
-
torch.manual_seed(seed)
|
185 |
-
y0.append(torch.randn(dur, self.num_channels, device=self.device, dtype=step_cond.dtype))
|
186 |
-
y0 = pad_sequence(y0, padding_value=0, batch_first=True)
|
187 |
-
|
188 |
-
t_start = 0
|
189 |
-
|
190 |
-
# duplicate test corner for inner time step oberservation
|
191 |
-
if duplicate_test:
|
192 |
-
t_start = t_inter
|
193 |
-
y0 = (1 - t_start) * y0 + t_start * test_cond
|
194 |
-
steps = int(steps * (1 - t_start))
|
195 |
-
|
196 |
-
t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
|
197 |
-
if sway_sampling_coef is not None:
|
198 |
-
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
199 |
-
|
200 |
-
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
201 |
-
|
202 |
-
sampled = trajectory[-1]
|
203 |
-
out = sampled
|
204 |
-
out = torch.where(cond_mask, cond, out)
|
205 |
-
|
206 |
-
if exists(vocoder):
|
207 |
-
out = out.permute(0, 2, 1)
|
208 |
-
out = vocoder(out)
|
209 |
-
|
210 |
-
return out, trajectory
|
211 |
-
|
212 |
-
def forward(
|
213 |
-
self,
|
214 |
-
inp: float["b n d"] | float["b nw"], # mel or raw wave # noqa: F722
|
215 |
-
text: int["b nt"] | list[str], # noqa: F722
|
216 |
-
*,
|
217 |
-
lens: int["b"] | None = None, # noqa: F821
|
218 |
-
noise_scheduler: str | None = None,
|
219 |
-
):
|
220 |
-
# handle raw wave
|
221 |
-
if inp.ndim == 2:
|
222 |
-
inp = self.mel_spec(inp)
|
223 |
-
inp = inp.permute(0, 2, 1)
|
224 |
-
assert inp.shape[-1] == self.num_channels
|
225 |
-
|
226 |
-
batch, seq_len, dtype, device, _σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
227 |
-
|
228 |
-
# handle text as string
|
229 |
-
if isinstance(text, list):
|
230 |
-
if exists(self.vocab_char_map):
|
231 |
-
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
232 |
-
else:
|
233 |
-
text = list_str_to_tensor(text).to(device)
|
234 |
-
assert text.shape[0] == batch
|
235 |
-
|
236 |
-
# lens and mask
|
237 |
-
if not exists(lens):
|
238 |
-
lens = torch.full((batch,), seq_len, device=device)
|
239 |
-
|
240 |
-
mask = lens_to_mask(lens, length=seq_len) # useless here, as collate_fn will pad to max length in batch
|
241 |
-
|
242 |
-
# get a random span to mask out for training conditionally
|
243 |
-
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
244 |
-
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
245 |
-
|
246 |
-
if exists(mask):
|
247 |
-
rand_span_mask &= mask
|
248 |
-
|
249 |
-
# mel is x1
|
250 |
-
x1 = inp
|
251 |
-
|
252 |
-
# x0 is gaussian noise
|
253 |
-
x0 = torch.randn_like(x1)
|
254 |
-
|
255 |
-
# time step
|
256 |
-
time = torch.rand((batch,), dtype=dtype, device=self.device)
|
257 |
-
# TODO. noise_scheduler
|
258 |
-
|
259 |
-
# sample xt (φ_t(x) in the paper)
|
260 |
-
t = time.unsqueeze(-1).unsqueeze(-1)
|
261 |
-
φ = (1 - t) * x0 + t * x1
|
262 |
-
flow = x1 - x0
|
263 |
-
|
264 |
-
# only predict what is within the random mask span for infilling
|
265 |
-
cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
|
266 |
-
|
267 |
-
# transformer and cfg training with a drop rate
|
268 |
-
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
|
269 |
-
if random() < self.cond_drop_prob: # p_uncond in voicebox paper
|
270 |
-
drop_audio_cond = True
|
271 |
-
drop_text = True
|
272 |
-
else:
|
273 |
-
drop_text = False
|
274 |
-
|
275 |
-
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
276 |
-
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
277 |
-
pred = self.transformer(
|
278 |
-
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text
|
279 |
-
)
|
280 |
-
|
281 |
-
# flow matching loss
|
282 |
-
loss = F.mse_loss(pred, flow, reduction="none")
|
283 |
-
loss = loss[rand_span_mask]
|
284 |
-
|
285 |
-
return loss.mean(), cond, pred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|