Spaces:
Runtime error
Runtime error
File size: 10,700 Bytes
2c61137 6a5956a 2c61137 6fcfdbf 41ba7f4 6fcfdbf 657bc15 6fcfdbf 41ba7f4 2c61137 41ba7f4 2c61137 6a5956a 2c61137 6fcfdbf 2c61137 aad3d7f 2c61137 6fcfdbf 2c61137 6fcfdbf 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 6fcfdbf 2c61137 6fcfdbf 2c61137 41ba7f4 2c61137 6fcfdbf 41ba7f4 2c61137 41ba7f4 2c61137 1835ff9 2c61137 e3ae0f8 2c61137 6fcfdbf 2c61137 e3ae0f8 2c61137 e3ae0f8 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 41ba7f4 2c61137 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import gradio as gr
import openai
import pytesseract
import random
import os
import time
Init_system_prompt = "You are an AI Assistant that tries to teach kids various subjects. You are given learning material and you task is to ask questions given the material and then you also grade answers and give feedback how to improve the answers"
system_message = {"role": "system", "content": Init_system_prompt}
system_prompts = {
"English": "You are an AI Assistant that tries to teach kids various subjects. You are given learning material and you task is to ask questions given the material and then you also grade answers and give feedback.",
"Finnish": "Olet tekoälyavustaja jonka tehtävänä on auttaa lapsia oppimaan koulussa. Sinulle annetaan oppimateriaalia tekstinä ja sinun tehtäväsi on kysyä kysymyksiä annetusta tekstistä, arvostella vastauksia ja antaa palautetta kuinka vastauksia voidaan parantaa."
}
question_strings = {
"English": "\n Please ask a question about the previous paragramph: Question:",
"Finnish": "\n Kysy kysymys edellisen kappaleen perusteella. Kysymys:",
}
lang_mapping = {
"English": "eng",
"Finnish": "fin"
}
grading_button_mapping = {
"English": gr.Button(value="Grade my answer"),
"Finnish": gr.Button(value="Arvostele vastaukseni")
}
new_question_button_mapping = {
"English": gr.Button(value="New question"),
"Finnish": gr.Button(value="Uusi kysymys")
}
clear_button__mapping = {
"English": gr.Button(value="Clear messages"),
"Finnish": gr.Button(value="Tyhjennä viestit")
}
grading_prompt_start_mapping = {
"English": "You are given question and answer. Give grading between one to ten with reasoning and give feedback how answer should be improved to get better grade. Here are rules how to format your answer, it is really important to stick to these rules:\n Your answer should be devided into the following sections separated by newline: Grading, feedback, reasoning for feedback. \n Do not repeat Answer or Question.",
"Finnish": "Saat kysymyksen ja vastauksen. Arvostele vastaus asteikolla yhdestä kymmeneen perusteluineen ja anna palautetta kuinka vastausta tulisi parantaa paremman arvosanan saamiseksi. \n Tässä ovat ohjeet vastauksesi muotoilulle:\n Vastauksesi tulee olla jaettuna seuraaviin osioihin rivinvaihdolla erotettuna: Arvostelu, palaute, perustelut palautteelle. \n Älä toista seuraavia osioita: Kysymys, Vastaus."
}
new_question_prompt = {
"English": "Next question please",
"Finnish": "Saisinko uuden kysymyksen"
}
import os
from PIL import Image
import pytesseract
os.system("rm -f path.txt")
path = os.system("which tesseract >> path.txt")
with open("path.txt", 'r') as file:
tesseract_path = file.read().replace('\n', '')
########### TAB 1 (UPLOAD) FUNCTIONS #############################
def print_files(files):
for file in files:
print(file.name)
def create_data(files, language_selection):
question_context = ''
for file in files:
if file.name.endswith('png') or file.name.endswith('.jpg') or file.name.endswith('.jpeg'):
try:
question_context += (pytesseract.image_to_string(Image.open(file.name), lang=lang_mapping[language_selection])) + '\n\n'
except Exception as e:
print(e)
pass
system_prompt = system_prompts[language_selection]
return question_context, system_prompt, new_question_button_mapping[language_selection], clear_button__mapping[language_selection]
########### TAB 2 (CHAT) FUNCTIONS #############################
def user(user_message, history):
return "", history + [[user_message, None]]
def add_new_question(language_selection, history):
return history + [[new_question_prompt[language_selection], None]]
def bot(history, messages_history, api_key, system_prompt, teksti_contexti, temperature, max_tokens, chatgpt_model, max_context_size_for_question, language_selection):
user_message = history[-1][0]
bot_message, messages_history = ask_gpt(user_message, messages_history, api_key, system_prompt, teksti_contexti, temperature, max_tokens, chatgpt_model, max_context_size_for_question, language_selection)
messages_history += [{"role": "assistant", "content": bot_message}]
history[-1][1] = bot_message
return history, messages_history
def ask_gpt(message, messages_history, api_key, system_prompt, context, temperature, max_tokens, chatgpt_model, max_context_size_for_question, language_selection):
if message == new_question_prompt[language_selection]:
max_possible_position = len(context)- max_context_size_for_question
start = random.randint(0,max_possible_position)
messages_history += [{"role": "user", "content": context[start:start+max_context_size_for_question] + question_strings[language_selection]}]
openai.api_key = api_key
response = openai.ChatCompletion.create(
model=chatgpt_model,
messages=messages_history,
temperature=temperature,
max_tokens=max_tokens
)
return response['choices'][0]['message']['content'], messages_history
else:
if len(messages_history) <= 1:
max_possible_position = len(context)- max_context_size_for_question
start = random.randint(0,max_possible_position)
messages_history += [{"role": "user", "content": context[start:start+max_context_size_for_question] + question_strings[language_selection]}]
openai.api_key = api_key
response = openai.ChatCompletion.create(
model=chatgpt_model,
messages=messages_history,
temperature=temperature,
max_tokens=max_tokens
)
return response['choices'][0]['message']['content'], messages_history
else:
question = messages_history[-1]['content']
if language_selection == 'English':
prompt_start = grading_prompt_start_mapping[language_selection]
prompt_end = 'Question: ' + question + '\n Answer: ' + message + '\n'
full_prompt = prompt_start + prompt_end
elif language_selection == 'Finnish':
prompt_start = grading_prompt_start_mapping[language_selection]
prompt_end = 'Kysymys: ' + question + '\n Vastaus: ' + message + '\n'
full_prompt = prompt_start + prompt_end
messages_history += [{"role": "user", "content": full_prompt}]
openai.api_key = api_key
response = openai.ChatCompletion.create(
model=chatgpt_model,
messages=messages_history,
temperature=temperature,
max_tokens=max_tokens
)
return prompt_end.replace('\n', '<br>') + response['choices'][0]['message']['content'].replace('\n', '<br>'), messages_history
def init_history(messages_history, system_prompt):
messages_history = []
messages_history += [{"role": "system", "content": system_prompt}]
msg_log = gr.Textbox(value="Tähän tulee message history")
system_prompt = gr.Textbox(value=system_prompt, label='Insert system message here')
return messages_history, system_prompt, msg_log
############# INTERFACE ##########################
with gr.Blocks() as demo:
gr.Markdown("Exam preparation demo: Upload images of textbooks and start learning!")
############# TAB 1 ##########################
with gr.Tab("Upload documents and create context"):
with gr.Row():
api_key = gr.Textbox(value='', type='password', label='Insert OPENAI API-key here')
with gr.Row():
language_selection = gr.Dropdown(value='English', choices=["English","Finnish"], label='Select language')
files = gr.File(file_count='multiple', file_types=['image'], interactivate = True)
create_context_btn = gr.Button(value='Recognize text and create context')
with gr.Row():
gr.Markdown("")
with gr.Row():
teksti_contexti = gr.Textbox(value='Tähän tulee konteksti', label='Created context')
############# TAB 2 ##########################
with gr.Tab("Chat"):
gr.Markdown("""<h1><center>ChatGPT
ChatBot with Gradio and OpenAI</center></h1>
""")
new_question_state_msg = gr.State(value=[["New_question", None]])#, hidden=True)
with gr.Row():
system_prompt = gr.Textbox(value=Init_system_prompt, label='Insert system message here')
chatgpt_model = gr.Dropdown(choices=["gpt-3.5-turbo", "gpt-3.5-turbo-0301", "gpt-3.5-turbo-0613"], value='gpt-3.5-turbo',label='ChatGPT model to use', interactive=True)
temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.7, label='Temperature')
max_tokens = gr.Slider(minimum=10, maximum=600, step=10, value=200, label='Max tokens')
max_context_size_for_question = gr.Slider(minimum=200, maximum=2000, step=50, value=300, label='Max context for questions')
with gr.Row():
chatbot = gr.Chatbot(label='ChatGPT Chat')
state = gr.State([])
with gr.Row():
msg = gr.Textbox()
with gr.Row():
new_question = gr.Button(value="New_question")
clear = gr.Button("Clear")
with gr.Accordion("Klikkaa avataksesi ohjeet"):
gr.Markdown("Ohjeet tulee tänne")
# TAB 1 (CREATE CONTEXT) Interactive elements:
create_context_btn.click(create_data, [files, language_selection], [teksti_contexti, system_prompt, new_question, clear])
# TAB 2 (CHAT) Interactive elements:
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
bot, [chatbot, state, api_key, system_prompt, teksti_contexti, temperature, max_tokens, chatgpt_model, max_context_size_for_question, language_selection], [chatbot, state]
)
new_question.click(add_new_question, [language_selection, chatbot], [chatbot], queue=False).then(
bot, [chatbot, state, api_key, system_prompt, teksti_contexti, temperature, max_tokens, chatgpt_model, max_context_size_for_question, language_selection], [chatbot, state]
)
clear.click(lambda: None, None, chatbot, queue=False).success(init_history, [state, system_prompt], [state, system_prompt])
demo.launch(debug=True) |