Update app.py
Browse files
app.py
CHANGED
|
@@ -1,101 +1,97 @@
|
|
| 1 |
-
# Importing libraries
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import json
|
| 4 |
import gradio as gr
|
| 5 |
from pathlib import Path
|
| 6 |
-
from ragatouille import RAGPretrainedModel
|
| 7 |
-
from gradio_client import Client
|
| 8 |
from tempfile import NamedTemporaryFile
|
| 9 |
from sentence_transformers import CrossEncoder
|
| 10 |
import numpy as np
|
| 11 |
from time import perf_counter
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
from
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
TEXT_COLUMN_NAME = "text"
|
| 19 |
-
proj_dir = Path.cwd()
|
| 20 |
|
| 21 |
# Set up logging
|
| 22 |
-
import logging
|
| 23 |
logging.basicConfig(level=logging.INFO)
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
|
| 34 |
-
quiz_data = None
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
def json_to_excel(output_json):
|
| 39 |
-
# Initialize list for DataFrame
|
| 40 |
data = []
|
| 41 |
gr.Warning('Generating Shareable file link..', duration=30)
|
| 42 |
-
for i in
|
| 43 |
-
question_key = f"Q{i}"
|
| 44 |
-
answer_key = f"A{i}"
|
| 45 |
-
|
| 46 |
-
question = output_json.get(question_key, '')
|
| 47 |
-
correct_answer_key = output_json.get(answer_key, '')
|
| 48 |
-
#correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
| 49 |
-
correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
| 50 |
-
|
| 51 |
-
# Extract options
|
| 52 |
-
option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
| 53 |
-
options = [output_json.get(key, '') for key in option_keys]
|
| 54 |
-
|
| 55 |
-
# Add data row
|
| 56 |
data.append([
|
| 57 |
-
question,
|
| 58 |
-
"Multiple Choice",
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
correct_answer,
|
| 65 |
-
30,
|
| 66 |
-
''
|
| 67 |
])
|
| 68 |
-
|
| 69 |
-
# Create DataFrame
|
| 70 |
df = pd.DataFrame(data, columns=[
|
| 71 |
-
"Question Text",
|
| 72 |
-
"Question Type",
|
| 73 |
-
"Option 1",
|
| 74 |
-
"Option 2",
|
| 75 |
-
"Option 3",
|
| 76 |
-
"Option 4",
|
| 77 |
-
"Option 5",
|
| 78 |
-
"Correct Answer",
|
| 79 |
-
"Time in seconds",
|
| 80 |
-
"Image Link"
|
| 81 |
])
|
| 82 |
-
|
| 83 |
-
temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
| 84 |
df.to_excel(temp_file.name, index=False)
|
| 85 |
return temp_file.name
|
| 86 |
-
# Define a colorful theme
|
| 87 |
-
colorful_theme = gr.themes.Default(
|
| 88 |
-
primary_hue="cyan", # Set a bright cyan as primary color
|
| 89 |
-
secondary_hue="yellow", # Set a bright magenta as secondary color
|
| 90 |
-
neutral_hue="purple" # Optionally set a neutral color
|
| 91 |
-
|
| 92 |
-
)
|
| 93 |
|
| 94 |
-
|
|
|
|
| 95 |
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# Create a single row for the HTML and Image
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column(scale=2):
|
| 101 |
gr.Image(value='logo.png', height=200, width=200)
|
|
@@ -104,127 +100,294 @@ with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
|
| 104 |
<center>
|
| 105 |
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
|
| 106 |
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
| 107 |
-
<i>⚠️ Students can create quiz from any topic from
|
| 108 |
</center>
|
| 109 |
""")
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
|
| 115 |
|
|
|
|
| 116 |
with gr.Row():
|
| 117 |
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
| 118 |
-
model_radio = gr.Radio(choices=[
|
| 119 |
-
value='(ACCURATE) BGE reranker', label="Embeddings",
|
| 120 |
-
info="First query to ColBERT may take a little time")
|
| 121 |
|
| 122 |
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
| 123 |
-
quiz_msg = gr.Textbox()
|
| 124 |
-
|
| 125 |
-
|
| 126 |
|
| 127 |
-
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg
|
| 128 |
def generate_quiz(question_difficulty, topic, cross_encoder):
|
| 129 |
top_k_rank = 10
|
| 130 |
documents = []
|
| 131 |
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
documents = [item['content'] for item in documents_full]
|
| 139 |
-
|
| 140 |
-
else:
|
| 141 |
-
document_start = perf_counter()
|
| 142 |
-
query_vec = retriever.encode(topic)
|
| 143 |
-
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
| 144 |
-
|
| 145 |
-
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
| 146 |
-
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
| 147 |
-
|
| 148 |
query_doc_pair = [[topic, doc] for doc in documents]
|
| 149 |
-
|
| 150 |
-
# if cross_encoder == '(FAST) MiniLM-L6v2':
|
| 151 |
-
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 152 |
-
if cross_encoder == '(ACCURATE) BGE reranker':
|
| 153 |
-
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
| 154 |
-
|
| 155 |
cross_scores = cross_encoder1.predict(query_doc_pair)
|
| 156 |
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
| 157 |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
|
| 188 |
-
|
| 189 |
-
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
| 193 |
|
| 194 |
-
|
| 195 |
-
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
| 200 |
-
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
|
| 217 |
-
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
|
| 226 |
-
|
| 227 |
|
| 228 |
-
QUIZBOT.queue()
|
| 229 |
-
QUIZBOT.launch(debug=True)
|
| 230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from pathlib import Path
|
|
|
|
|
|
|
| 3 |
from tempfile import NamedTemporaryFile
|
| 4 |
from sentence_transformers import CrossEncoder
|
| 5 |
import numpy as np
|
| 6 |
from time import perf_counter
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from pydantic import BaseModel, Field
|
| 9 |
+
from phi.agent import Agent
|
| 10 |
+
from phi.model.groq import Groq
|
| 11 |
+
import os
|
| 12 |
+
import logging
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Set up logging
|
|
|
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
+
# API Key setup
|
| 19 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 20 |
+
if not api_key:
|
| 21 |
+
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
|
| 22 |
+
logger.error("GROQ_API_KEY not found.")
|
| 23 |
+
else:
|
| 24 |
+
os.environ["GROQ_API_KEY"] = api_key
|
| 25 |
+
|
| 26 |
+
# Pydantic Model for Quiz Structure
|
| 27 |
+
class QuizItem(BaseModel):
|
| 28 |
+
question: str = Field(..., description="The quiz question")
|
| 29 |
+
choices: list[str] = Field(..., description="List of 4 multiple-choice options")
|
| 30 |
+
correct_answer: str = Field(..., description="The correct choice (e.g., 'C1')")
|
| 31 |
+
|
| 32 |
+
class QuizOutput(BaseModel):
|
| 33 |
+
items: list[QuizItem] = Field(..., description="List of 10 quiz items")
|
| 34 |
+
|
| 35 |
+
# Initialize Agents
|
| 36 |
+
groq_agent = Agent(model=Groq(model="llama3-70b-8192", api_key=api_key), markdown=True)
|
| 37 |
+
|
| 38 |
+
quiz_generator = Agent(
|
| 39 |
+
name="Quiz Generator",
|
| 40 |
+
role="Generates structured quiz questions and answers",
|
| 41 |
+
instructions=[
|
| 42 |
+
"Create 10 questions with 4 choices each based on the provided topic and documents.",
|
| 43 |
+
"Use the specified difficulty level (easy, average, hard) to adjust question complexity.",
|
| 44 |
+
"Ensure questions are derived only from the provided documents.",
|
| 45 |
+
"Return the output in a structured format using the QuizOutput Pydantic model.",
|
| 46 |
+
"Each question should have a unique correct answer from the choices (labeled C1, C2, C3, C4)."
|
| 47 |
+
],
|
| 48 |
+
model=Groq(id="llama3-70b-8192", api_key=api_key),
|
| 49 |
+
response_model=QuizOutput,
|
| 50 |
+
markdown=True
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
VECTOR_COLUMN_NAME = "vector"
|
| 54 |
+
TEXT_COLUMN_NAME = "text"
|
| 55 |
+
proj_dir = Path.cwd()
|
| 56 |
|
| 57 |
+
# Calling functions from backend (assuming they exist)
|
| 58 |
+
from backend.semantic_search import table, retriever
|
|
|
|
| 59 |
|
| 60 |
+
def generate_quiz_data(question_difficulty, topic, documents_str):
|
| 61 |
+
prompt = f"""Generate a quiz with {question_difficulty} difficulty on topic '{topic}' using only the following documents:\n{documents_str}"""
|
| 62 |
+
try:
|
| 63 |
+
response = quiz_generator.run(prompt)
|
| 64 |
+
return response.content
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.error(f"Failed to generate quiz: {e}")
|
| 67 |
+
return None
|
| 68 |
|
| 69 |
+
def json_to_excel(quiz_data):
|
|
|
|
|
|
|
| 70 |
data = []
|
| 71 |
gr.Warning('Generating Shareable file link..', duration=30)
|
| 72 |
+
for i, item in enumerate(quiz_data.items, 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
data.append([
|
| 74 |
+
item.question,
|
| 75 |
+
"Multiple Choice",
|
| 76 |
+
item.choices[0],
|
| 77 |
+
item.choices[1],
|
| 78 |
+
item.choices[2],
|
| 79 |
+
item.choices[3],
|
| 80 |
+
'', # Option 5 (empty)
|
| 81 |
+
item.correct_answer.replace('C', ''),
|
| 82 |
+
30,
|
| 83 |
+
''
|
| 84 |
])
|
|
|
|
|
|
|
| 85 |
df = pd.DataFrame(data, columns=[
|
| 86 |
+
"Question Text", "Question Type", "Option 1", "Option 2", "Option 3", "Option 4", "Option 5", "Correct Answer", "Time in seconds", "Image Link"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
])
|
| 88 |
+
temp_file = NamedTemporaryFile(delete=True, suffix=".xlsx")
|
|
|
|
| 89 |
df.to_excel(temp_file.name, index=False)
|
| 90 |
return temp_file.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
colorful_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="yellow", neutral_hue="purple")
|
| 93 |
+
|
| 94 |
with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
|
|
|
|
|
|
|
|
|
| 95 |
with gr.Row():
|
| 96 |
with gr.Column(scale=2):
|
| 97 |
gr.Image(value='logo.png', height=200, width=200)
|
|
|
|
| 100 |
<center>
|
| 101 |
<h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
|
| 102 |
<h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
| 103 |
+
<i>⚠️ Students can create quiz from any topic from 9th Science and evaluate themselves! ⚠️</i>
|
| 104 |
</center>
|
| 105 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from 9TH Science CBSE")
|
| 108 |
with gr.Row():
|
| 109 |
difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
| 110 |
+
model_radio = gr.Radio(choices=['(ACCURATE) BGE reranker'], value='(ACCURATE) BGE reranker', label="Embeddings") # Removed ColBERT option
|
|
|
|
|
|
|
| 111 |
|
| 112 |
generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
| 113 |
+
quiz_msg = gr.Textbox(label="Status", interactive=False)
|
| 114 |
+
question_display = gr.HTML(visible=False)
|
| 115 |
+
download_excel = gr.File(label="Download Excel")
|
| 116 |
|
| 117 |
+
@generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg, question_display, download_excel])
|
| 118 |
def generate_quiz(question_difficulty, topic, cross_encoder):
|
| 119 |
top_k_rank = 10
|
| 120 |
documents = []
|
| 121 |
gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
| 122 |
|
| 123 |
+
document_start = perf_counter()
|
| 124 |
+
query_vec = retriever.encode(topic)
|
| 125 |
+
documents = [doc[TEXT_COLUMN_NAME] for doc in table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()]
|
| 126 |
+
if cross_encoder == '(ACCURATE) BGE reranker':
|
| 127 |
+
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
query_doc_pair = [[topic, doc] for doc in documents]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
cross_scores = cross_encoder1.predict(query_doc_pair)
|
| 130 |
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
| 131 |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
| 132 |
|
| 133 |
+
documents_str = '\n'.join(documents)
|
| 134 |
+
quiz_data = generate_quiz_data(question_difficulty, topic, documents_str)
|
| 135 |
+
if not quiz_data or not quiz_data.items:
|
| 136 |
+
return ["Error: Failed to generate quiz.", gr.HTML(visible=False), None]
|
| 137 |
+
|
| 138 |
+
excel_file = json_to_excel(quiz_data)
|
| 139 |
+
html_content = "<div>" + "".join(f"<h3>{i}. {item.question}</h3><p>{'<br>'.join(item.choices)}</p>" for i, item in enumerate(quiz_data.items[:10], 1)) + "</div>"
|
| 140 |
+
return ["Quiz Generated!", gr.HTML(value=html_content, visible=True), excel_file]
|
| 141 |
+
|
| 142 |
+
check_button = gr.Button("Check Score")
|
| 143 |
+
score_textbox = gr.Markdown()
|
| 144 |
+
|
| 145 |
+
@check_button.click(inputs=question_display, outputs=score_textbox)
|
| 146 |
+
def compare_answers(html_content):
|
| 147 |
+
if not quiz_data or not quiz_data.items:
|
| 148 |
+
return "Please generate a quiz first."
|
| 149 |
+
# Placeholder for user answers (adjust based on actual UI implementation)
|
| 150 |
+
user_answers = [] # Implement parsing logic if using radio inputs
|
| 151 |
+
correct_answers = [item.correct_answer for item in quiz_data.items[:10]]
|
| 152 |
+
score = sum(1 for u, c in zip(user_answers, correct_answers) if u == c)
|
| 153 |
+
if score > 7:
|
| 154 |
+
message = f"### Excellent! You got {score} out of 10!"
|
| 155 |
+
elif score > 5:
|
| 156 |
+
message = f"### Good! You got {score} out of 10!"
|
| 157 |
+
else:
|
| 158 |
+
message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
| 159 |
+
return message
|
| 160 |
+
|
| 161 |
+
if __name__ == "__main__":
|
| 162 |
+
QUIZBOT.queue().launch(debug=True)
|
| 163 |
+
|
| 164 |
+
# # Importing libraries
|
| 165 |
+
# import pandas as pd
|
| 166 |
+
# import json
|
| 167 |
+
# import gradio as gr
|
| 168 |
+
# from pathlib import Path
|
| 169 |
+
# from ragatouille import RAGPretrainedModel
|
| 170 |
+
# from gradio_client import Client
|
| 171 |
+
# from tempfile import NamedTemporaryFile
|
| 172 |
+
# from sentence_transformers import CrossEncoder
|
| 173 |
+
# import numpy as np
|
| 174 |
+
# from time import perf_counter
|
| 175 |
+
# from sentence_transformers import CrossEncoder
|
| 176 |
+
|
| 177 |
+
# #calling functions from other files - to call the knowledge database tables (lancedb for accurate mode) for creating quiz
|
| 178 |
+
# from backend.semantic_search import table, retriever
|
| 179 |
+
|
| 180 |
+
# VECTOR_COLUMN_NAME = "vector"
|
| 181 |
+
# TEXT_COLUMN_NAME = "text"
|
| 182 |
+
# proj_dir = Path.cwd()
|
| 183 |
+
|
| 184 |
+
# # Set up logging
|
| 185 |
+
# import logging
|
| 186 |
+
# logging.basicConfig(level=logging.INFO)
|
| 187 |
+
# logger = logging.getLogger(__name__)
|
| 188 |
+
|
| 189 |
+
# # Replace Mixtral client with Qwen Client
|
| 190 |
+
# client = Client("Qwen/Qwen1.5-110B-Chat-demo")
|
| 191 |
+
|
| 192 |
+
# def system_instructions(question_difficulty, topic, documents_str):
|
| 193 |
+
# return f"""<s> [INST] You are a great teacher and your task is to create 10 questions with 4 choices with {question_difficulty} difficulty about the topic request "{topic}" only from the below given documents, {documents_str}. Then create answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". Example: 'A10':'Q10:C3' [/INST]"""
|
| 194 |
+
|
| 195 |
+
# # Ragatouille database for Colbert ie highly accurate mode
|
| 196 |
+
# RAG_db = gr.State()
|
| 197 |
+
# quiz_data = None
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# #defining a function to convert json file to excel file
|
| 201 |
+
# def json_to_excel(output_json):
|
| 202 |
+
# # Initialize list for DataFrame
|
| 203 |
+
# data = []
|
| 204 |
+
# gr.Warning('Generating Shareable file link..', duration=30)
|
| 205 |
+
# for i in range(1, 11): # Assuming there are 10 questions
|
| 206 |
+
# question_key = f"Q{i}"
|
| 207 |
+
# answer_key = f"A{i}"
|
| 208 |
+
|
| 209 |
+
# question = output_json.get(question_key, '')
|
| 210 |
+
# correct_answer_key = output_json.get(answer_key, '')
|
| 211 |
+
# #correct_answer = correct_answer_key.split(':')[-1] if correct_answer_key else ''
|
| 212 |
+
# correct_answer = correct_answer_key.split(':')[-1].replace('C', '').strip() if correct_answer_key else ''
|
| 213 |
+
|
| 214 |
+
# # Extract options
|
| 215 |
+
# option_keys = [f"{question_key}:C{i}" for i in range(1, 6)]
|
| 216 |
+
# options = [output_json.get(key, '') for key in option_keys]
|
| 217 |
+
|
| 218 |
+
# # Add data row
|
| 219 |
+
# data.append([
|
| 220 |
+
# question, # Question Text
|
| 221 |
+
# "Multiple Choice", # Question Type
|
| 222 |
+
# options[0], # Option 1
|
| 223 |
+
# options[1], # Option 2
|
| 224 |
+
# options[2] if len(options) > 2 else '', # Option 3
|
| 225 |
+
# options[3] if len(options) > 3 else '', # Option 4
|
| 226 |
+
# options[4] if len(options) > 4 else '', # Option 5
|
| 227 |
+
# correct_answer, # Correct Answer
|
| 228 |
+
# 30, # Time in seconds
|
| 229 |
+
# '' # Image Link
|
| 230 |
+
# ])
|
| 231 |
+
|
| 232 |
+
# # Create DataFrame
|
| 233 |
+
# df = pd.DataFrame(data, columns=[
|
| 234 |
+
# "Question Text",
|
| 235 |
+
# "Question Type",
|
| 236 |
+
# "Option 1",
|
| 237 |
+
# "Option 2",
|
| 238 |
+
# "Option 3",
|
| 239 |
+
# "Option 4",
|
| 240 |
+
# "Option 5",
|
| 241 |
+
# "Correct Answer",
|
| 242 |
+
# "Time in seconds",
|
| 243 |
+
# "Image Link"
|
| 244 |
+
# ])
|
| 245 |
+
|
| 246 |
+
# temp_file = NamedTemporaryFile(delete=False, suffix=".xlsx")
|
| 247 |
+
# df.to_excel(temp_file.name, index=False)
|
| 248 |
+
# return temp_file.name
|
| 249 |
+
# # Define a colorful theme
|
| 250 |
+
# colorful_theme = gr.themes.Default(
|
| 251 |
+
# primary_hue="cyan", # Set a bright cyan as primary color
|
| 252 |
+
# secondary_hue="yellow", # Set a bright magenta as secondary color
|
| 253 |
+
# neutral_hue="purple" # Optionally set a neutral color
|
| 254 |
+
|
| 255 |
+
# )
|
| 256 |
+
|
| 257 |
+
# #gradio app creation for a user interface
|
| 258 |
+
# with gr.Blocks(title="Quiz Maker", theme=colorful_theme) as QUIZBOT:
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# # Create a single row for the HTML and Image
|
| 262 |
+
# with gr.Row():
|
| 263 |
+
# with gr.Column(scale=2):
|
| 264 |
+
# gr.Image(value='logo.png', height=200, width=200)
|
| 265 |
+
# with gr.Column(scale=6):
|
| 266 |
+
# gr.HTML("""
|
| 267 |
+
# <center>
|
| 268 |
+
# <h1><span style="color: purple;">GOVERNMENT HIGH SCHOOL,SUTHUKENY</span> STUDENTS QUIZBOT </h1>
|
| 269 |
+
# <h2>Generative AI-powered Capacity building for STUDENTS</h2>
|
| 270 |
+
# <i>⚠️ Students can create quiz from any topic from 10 science and evaluate themselves! ⚠️</i>
|
| 271 |
+
# </center>
|
| 272 |
+
# """)
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
# topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any CHAPTER NAME")
|
| 278 |
+
|
| 279 |
+
# with gr.Row():
|
| 280 |
+
# difficulty_radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
| 281 |
+
# model_radio = gr.Radio(choices=[ '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'],
|
| 282 |
+
# value='(ACCURATE) BGE reranker', label="Embeddings",
|
| 283 |
+
# info="First query to ColBERT may take a little time")
|
| 284 |
+
|
| 285 |
+
# generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
| 286 |
+
# quiz_msg = gr.Textbox()
|
| 287 |
+
|
| 288 |
+
# question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
| 289 |
+
|
| 290 |
+
# @generate_quiz_btn.click(inputs=[difficulty_radio, topic, model_radio], outputs=[quiz_msg] + question_radios + [gr.File(label="Download Excel")])
|
| 291 |
+
# def generate_quiz(question_difficulty, topic, cross_encoder):
|
| 292 |
+
# top_k_rank = 10
|
| 293 |
+
# documents = []
|
| 294 |
+
# gr.Warning('Generating Quiz may take 1-2 minutes. Please wait.', duration=60)
|
| 295 |
+
|
| 296 |
+
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
| 297 |
+
# gr.Warning('Retrieving using ColBERT.. First-time query will take 2 minute for model to load.. please wait',duration=100)
|
| 298 |
+
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
| 299 |
+
# RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
| 300 |
+
# documents_full = RAG_db.value.search(topic, k=top_k_rank)
|
| 301 |
+
# documents = [item['content'] for item in documents_full]
|
| 302 |
+
|
| 303 |
+
# else:
|
| 304 |
+
# document_start = perf_counter()
|
| 305 |
+
# query_vec = retriever.encode(topic)
|
| 306 |
+
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
| 307 |
+
|
| 308 |
+
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank).to_list()
|
| 309 |
+
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
| 310 |
+
|
| 311 |
+
# query_doc_pair = [[topic, doc] for doc in documents]
|
| 312 |
+
|
| 313 |
+
# # if cross_encoder == '(FAST) MiniLM-L6v2':
|
| 314 |
+
# # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 315 |
+
# if cross_encoder == '(ACCURATE) BGE reranker':
|
| 316 |
+
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
| 317 |
|
| 318 |
+
# cross_scores = cross_encoder1.predict(query_doc_pair)
|
| 319 |
+
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
| 320 |
+
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
| 321 |
+
|
| 322 |
+
# #creating a text prompt to Qwen model combining the documents and system instruction
|
| 323 |
+
# formatted_prompt = system_instructions(question_difficulty, topic, '\n'.join(documents))
|
| 324 |
+
# print(' Formatted Prompt : ' ,formatted_prompt)
|
| 325 |
+
# try:
|
| 326 |
+
# response = client.predict(query=formatted_prompt, history=[], system="You are a helpful assistant.", api_name="/model_chat")
|
| 327 |
+
# response1 = response[1][0][1]
|
| 328 |
+
|
| 329 |
+
# # Extract JSON
|
| 330 |
+
# start_index = response1.find('{')
|
| 331 |
+
# end_index = response1.rfind('}')
|
| 332 |
+
# cleaned_response = response1[start_index:end_index + 1] if start_index != -1 and end_index != -1 else ''
|
| 333 |
+
# print('Cleaned Response :',cleaned_response)
|
| 334 |
+
# output_json = json.loads(cleaned_response)
|
| 335 |
+
# # Assign the extracted JSON to quiz_data for use in the comparison function
|
| 336 |
+
# global quiz_data
|
| 337 |
+
# quiz_data = output_json
|
| 338 |
+
# # Generate the Excel file
|
| 339 |
+
# excel_file = json_to_excel(output_json)
|
| 340 |
|
| 341 |
|
| 342 |
+
# #Create a Quiz display in app
|
| 343 |
+
# question_radio_list = []
|
| 344 |
+
# for question_num in range(1, 11):
|
| 345 |
+
# question_key = f"Q{question_num}"
|
| 346 |
+
# answer_key = f"A{question_num}"
|
| 347 |
|
| 348 |
+
# question = output_json.get(question_key)
|
| 349 |
+
# answer = output_json.get(output_json.get(answer_key))
|
| 350 |
|
| 351 |
+
# if not question or not answer:
|
| 352 |
+
# continue
|
| 353 |
|
| 354 |
+
# choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
| 355 |
+
# choice_list = [output_json.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
| 356 |
|
| 357 |
+
# radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
| 358 |
+
# question_radio_list.append(radio)
|
| 359 |
|
| 360 |
+
# return ['Quiz Generated!'] + question_radio_list + [excel_file]
|
| 361 |
|
| 362 |
+
# except json.JSONDecodeError as e:
|
| 363 |
+
# print(f"Failed to decode JSON: {e}")
|
| 364 |
|
| 365 |
+
# check_button = gr.Button("Check Score")
|
| 366 |
+
# score_textbox = gr.Markdown()
|
| 367 |
|
| 368 |
+
# @check_button.click(inputs=question_radios, outputs=score_textbox)
|
| 369 |
+
# def compare_answers(*user_answers):
|
| 370 |
+
# user_answer_list = list(user_answers)
|
| 371 |
+
# answers_list = []
|
| 372 |
|
| 373 |
+
# for question_num in range(1, 11):
|
| 374 |
+
# answer_key = f"A{question_num}"
|
| 375 |
+
# answer = quiz_data.get(quiz_data.get(answer_key))
|
| 376 |
+
# if not answer:
|
| 377 |
+
# break
|
| 378 |
+
# answers_list.append(answer)
|
| 379 |
|
| 380 |
+
# score = sum(1 for item in user_answer_list if item in answers_list)
|
| 381 |
|
| 382 |
+
# if score > 7:
|
| 383 |
+
# message = f"### Excellent! You got {score} out of 10!"
|
| 384 |
+
# elif score > 5:
|
| 385 |
+
# message = f"### Good! You got {score} out of 10!"
|
| 386 |
+
# else:
|
| 387 |
+
# message = f"### You got {score} out of 10! Don't worry. You can prepare well and try better next time!"
|
| 388 |
|
| 389 |
+
# return message
|
| 390 |
|
| 391 |
+
# QUIZBOT.queue()
|
| 392 |
+
# QUIZBOT.launch(debug=True)
|
| 393 |
|