Spaces:
Sleeping
Sleeping
File size: 25,661 Bytes
e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a db81e26 e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 f3c5e9a e74bd37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import gradio as gr
from phi.agent import Agent
from phi.model.groq import Groq
import os
import logging
from sentence_transformers import CrossEncoder
from backend.semantic_search import table, retriever
import numpy as np
from time import perf_counter
import requests
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API Key setup
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
logger.error("GROQ_API_KEY not found.")
api_key = "" # Fallback to empty string, but this will fail without a key
else:
os.environ["GROQ_API_KEY"] = api_key
# Bhashini API setup
bhashini_api_key = os.getenv("API_KEY")
bhashini_user_id = os.getenv("USER_ID")
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
"""Translates text from source language to target language using the Bhashini API."""
if not text.strip():
print('Input text is empty. Please provide valid text for translation.')
return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
else:
print('Input text - ', text)
print(f'Starting translation process from {from_code} to {to_code}...')
gr.Warning(f'Translating to {to_code}...')
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
headers = {
"Content-Type": "application/json",
"userID": bhashini_user_id,
"ulcaApiKey": bhashini_api_key
}
payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
}
print('Sending initial request to get the pipeline...')
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f'Error in initial request: {response.status_code}, Response: {response.text}')
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
print('Initial request successful, processing response...')
response_data = response.json()
print('Full response data:', response_data) # Debug the full response
if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
print('Unexpected response structure:', response_data)
return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
print(f'Service ID: {service_id}, Callback URL: {callback_url}')
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
}
print(f'Sending translation request with text: "{text}"')
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
if compute_response.status_code != 200:
print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
print('Translation request successful, processing translation...')
compute_response_data = compute_response.json()
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
print(f'Translation successful. Translated content: "{translated_content}"')
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# Initialize PhiData Agent
agent = Agent(
name="Science Education Assistant",
role="You are a helpful science tutor for 10th-grade students",
instructions=[
"You are an expert science teacher specializing in 10th-grade curriculum.",
"Provide clear, accurate, and age-appropriate explanations.",
"Use simple language and examples that students can understand.",
"Focus on concepts from physics, chemistry, and biology.",
"Structure responses with headings and bullet points when helpful.",
"Encourage learning and curiosity."
],
model=Groq(id="llama3-70b-8192", api_key=api_key),
markdown=True
)
# Response Generation Function
def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
"""Generate response using semantic search and LLM"""
top_rerank = 25
top_k_rank = 20
if not query.strip():
return "Please provide a valid question."
try:
start_time = perf_counter()
# Encode query and search documents
query_vec = retriever.encode(query)
documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
documents = [doc["text"] for doc in documents]
# Re-rank documents using cross-encoder
cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
query_doc_pair = [[query, doc] for doc in documents]
cross_scores = cross_encoder_model.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# Create context from top documents
context = "\n\n".join(documents[:10]) if documents else ""
context = f"Context information from educational materials:\n{context}\n\n"
# Add conversation history for context
history_context = ""
if history and len(history) > 0:
for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
if user_msg and bot_msg:
history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
# Create full prompt
full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
# Generate response
response = agent.run(full_prompt)
response_text = response.content if hasattr(response, 'content') else str(response)
logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
return response_text
except Exception as e:
logger.error(f"Error in response generation: {e}")
return f"Error generating response: {str(e)}"
def simple_chat_function(message, history, cross_encoder_choice):
"""Chat function with semantic search and retriever integration"""
if not message.strip():
return "", history
# Generate response using the semantic search function
response = retrieve_and_generate_response(message, cross_encoder_choice, history)
# Add to history
history.append([message, response])
return "", history
def translate_text(selected_language, history):
"""Translate the last response in history to the selected language."""
iso_language_codes = {
"Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
"Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
"Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
"Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
}
to_code = iso_language_codes[selected_language]
response_text = history[-1][1] if history and history[-1][1] else ''
print('response_text for translation', response_text)
translation = bhashini_translate(response_text, to_code=to_code)
return translation.get('translated_content', 'Translation failed.')
# Gradio Interface with layout template
with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
# Header section
with gr.Row():
with gr.Column(scale=10):
gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
with gr.Column(scale=3):
try:
gr.Image(value='logo.png', height=200, width=200)
except:
gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")
# Chat and input components
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
msg = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")
# Additional controls
cross_encoder = gr.Radio(
choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
value='(ACCURATE) BGE reranker',
label="Embeddings Model",
info="Select the model for document ranking"
)
language_dropdown = gr.Dropdown(
choices=[
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
"Gujarati", "Odia"
],
value="Hindi",
label="Select Language for Translation"
)
translated_textbox = gr.Textbox(label="Translated Response")
# Event handlers
def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
if not message.strip():
return "", history, ""
# Generate response
response = retrieve_and_generate_response(message, cross_encoder_choice, history)
history.append([message, response])
# Translate response
translated_text = translate_text(selected_language, history)
return "", history, translated_text
msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
clear = gr.Button("Clear Conversation")
clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])
# Example questions
gr.Examples(
examples=[
'What is the difference between metals and non-metals?',
'What is an ionic bond?',
'Explain asexual reproduction',
'What is photosynthesis?',
'Explain Newton\'s laws of motion'
],
inputs=msg,
label="Try these example questions:"
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr# import requests
# import gradio as gr
# from ragatouille import RAGPretrainedModel
# import logging
# from pathlib import Path
# from time import perf_counter
# from sentence_transformers import CrossEncoder
# from huggingface_hub import InferenceClient
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from os import getenv
# from backend.query_llm import generate_hf, generate_qwen
# from backend.semantic_search import table, retriever
# from huggingface_hub import InferenceClient
# # Bhashini API translation function
# api_key = getenv('API_KEY')
# user_id = getenv('USER_ID')
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
# """Translates text from source language to target language using the Bhashini API."""
# if not text.strip():
# print('Input text is empty. Please provide valid text for translation.')
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
# else:
# print('Input text - ',text)
# print(f'Starting translation process from {from_code} to {to_code}...')
# print(f'Starting translation process from {from_code} to {to_code}...')
# gr.Warning(f'Translating to {to_code}...')
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
# headers = {
# "Content-Type": "application/json",
# "userID": user_id,
# "ulcaApiKey": api_key
# }
# payload = {
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
# "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
# }
# print('Sending initial request to get the pipeline...')
# response = requests.post(url, json=payload, headers=headers)
# if response.status_code != 200:
# print(f'Error in initial request: {response.status_code}')
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
# print('Initial request successful, processing response...')
# response_data = response.json()
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
# print(f'Service ID: {service_id}, Callback URL: {callback_url}')
# headers2 = {
# "Content-Type": "application/json",
# response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
# }
# compute_payload = {
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
# "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
# }
# print(f'Sending translation request with text: "{text}"')
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
# if compute_response.status_code != 200:
# print(f'Error in translation request: {compute_response.status_code}')
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
# print('Translation request successful, processing translation...')
# compute_response_data = compute_response.json()
# translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
# print(f'Translation successful. Translated content: "{translated_content}"')
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# # Existing chatbot functions
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# # def add_text(history, text):
# # history = [] if history is None else history
# # history = history + [(text, None)]
# # return history, gr.Textbox(value="", interactive=False)
# def bot(history, cross_encoder):
# top_rerank = 25
# top_k_rank = 20
# query = history[-1][0] if history else ''
# print('\nQuery: ',query )
# print('\nHistory:',history)
# if not query:
# gr.Warning("Please submit a non-empty string as a prompt")
# raise ValueError("Empty string was submitted")
# logger.warning('Retrieving documents...')
# if cross_encoder == '(HIGH ACCURATE) ColBERT':
# gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# documents_full = RAG_db.search(query, k=top_k_rank)
# documents = [item['content'] for item in documents_full]
# prompt = template.render(documents=documents, query=query)
# prompt_html = template_html.render(documents=documents, query=query)
# generate_fn = generate_hf
# history[-1][1] = ""
# for character in generate_fn(prompt, history[:-1]):
# history[-1][1] = character
# yield history, prompt_html
# else:
# document_start = perf_counter()
# query_vec = retriever.encode(query)
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# query_doc_pair = [[query, doc] for doc in documents]
# if cross_encoder == '(FAST) MiniLM-L6v2':
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# elif cross_encoder == '(ACCURATE) BGE reranker':
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
# cross_scores = cross_encoder1.predict(query_doc_pair)
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# document_time = perf_counter() - document_start
# prompt = template.render(documents=documents, query=query)
# prompt_html = template_html.render(documents=documents, query=query)
# #generate_fn = generate_hf
# generate_fn=generate_qwen
# # Create a new history entry instead of modifying the tuple directly
# new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
# output=''
# # for character in generate_fn(prompt, history[:-1]):
# # #new_history[-1] = (query, character)
# # output+=character
# output=generate_fn(prompt, history[:-1])
# print('Output:',output)
# new_history[-1] = (prompt, output) #query replaced with prompt
# print('New History',new_history)
# #print('prompt html',prompt_html)# Update the last tuple with new text
# history_list = list(history[-1])
# history_list[1] = output # Assuming `character` is what you want to assign
# # Update the history with the modified list converted back to a tuple
# history[-1] = tuple(history_list)
# #history[-1][1] = character
# # yield new_history, prompt_html
# yield history, prompt_html
# # new_history,prompt_html
# # history[-1][1] = ""
# # for character in generate_fn(prompt, history[:-1]):
# # history[-1][1] = character
# # yield history, prompt_html
# #def translate_text(response_text, selected_language):
# def translate_text(selected_language,history):
# iso_language_codes = {
# "Hindi": "hi",
# "Gom": "gom",
# "Kannada": "kn",
# "Dogri": "doi",
# "Bodo": "brx",
# "Urdu": "ur",
# "Tamil": "ta",
# "Kashmiri": "ks",
# "Assamese": "as",
# "Bengali": "bn",
# "Marathi": "mr",
# "Sindhi": "sd",
# "Maithili": "mai",
# "Punjabi": "pa",
# "Malayalam": "ml",
# "Manipuri": "mni",
# "Telugu": "te",
# "Sanskrit": "sa",
# "Nepali": "ne",
# "Santali": "sat",
# "Gujarati": "gu",
# "Odia": "or"
# }
# to_code = iso_language_codes[selected_language]
# response_text = history[-1][1] if history else ''
# print('response_text for translation',response_text)
# translation = bhashini_translate(response_text, to_code=to_code)
# return translation['translated_content']
# # Gradio interface
# with gr.Blocks(theme='gradio/soft') as CHATBOT:
# history_state = gr.State([])
# with gr.Row():
# with gr.Column(scale=10):
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
# with gr.Column(scale=3):
# gr.Image(value='logo.png', height=200, width=200)
# chatbot = gr.Chatbot(
# [],
# elem_id="chatbot",
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
# bubble_full_width=False,
# show_copy_button=True,
# show_share_button=True,
# )
# with gr.Row():
# txt = gr.Textbox(
# scale=3,
# show_label=False,
# placeholder="Enter text and press enter",
# container=False,
# )
# txt_btn = gr.Button(value="Submit text", scale=1)
# cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
# language_dropdown = gr.Dropdown(
# choices=[
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
# "Gujarati", "Odia"
# ],
# value="Hindi", # default to Hindi
# label="Select Language for Translation"
# )
# prompt_html = gr.HTML()
# translated_textbox = gr.Textbox(label="Translated Response")
# def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
# print('History state',history_state)
# history = history_state
# history.append((txt, ""))
# #history_state.value=(history)
# # Call bot function
# # bot_output = list(bot(history, cross_encoder))
# bot_output = next(bot(history, cross_encoder))
# print('bot_output',bot_output)
# #history, prompt_html = bot_output[-1]
# history, prompt_html = bot_output
# print('History',history)
# # Update the history state
# history_state[:] = history
# # Translate text
# translated_text = translate_text(language_dropdown, history)
# return history, prompt_html, translated_text
# txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
# examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?','WHAT IS COVALENT BOND?',
# 'EXPLAIN GOLGI APPARATUS']
# gr.Examples(examples, txt)
# # Launch the Gradio application
# CHATBOT.launch(share=True,debug=True)
|