|
import numpy as np |
|
from math import exp |
|
|
|
np.random.seed(0) |
|
class VanillaRecurrentNetwork(object): |
|
|
|
def __init__(self): |
|
self.hidden_state = np.zeros((3, 3)) |
|
self.W_hh = np.random.randn(3, 3) |
|
self.W_xh = np.random.randn(3, 3) |
|
self.W_hy = np.random.randn(3, 3) |
|
self.Bh = np.random.randn(3,) |
|
self.By = np.random.rand(3,) |
|
|
|
self.hidden_state_activation_function = lambda x : np.tanh(x) |
|
self.y_activation_function = lambda x : x |
|
|
|
self.loss_funciton = lambda y : exp(y) / np.sum(exp(y)) |
|
|
|
def forward_prop(self, x): |
|
self.hidden_state = self.hidden_state_activation_function( |
|
np.dot(self.hidden_state, self.W_hh) + np.dot(x, self.W_xh) + self.Bh |
|
) |
|
|
|
return self.y_activation_function(self.W_hy.dot(self.hidden_state) + self.By) |
|
|