""" Main application for Dynamic Highscores system. This file integrates all components into a unified application. """ import os import gradio as gr import threading import queue from database_schema import init_db from auth import HuggingFaceAuth, create_login_ui, setup_auth_handlers from benchmark_selection import BenchmarkSelector, create_benchmark_selection_ui from evaluation_queue import EvaluationQueue, create_model_submission_ui from leaderboard import Leaderboard, create_leaderboard_ui from sample_benchmarks import add_sample_benchmarks # Initialize database db = init_db() # Initialize components auth_manager = HuggingFaceAuth(db) benchmark_selector = BenchmarkSelector(db, auth_manager) evaluation_queue = EvaluationQueue(db, auth_manager) leaderboard = Leaderboard(db) # Initialize sample benchmarks if none exist benchmarks = db.get_benchmarks() if not benchmarks or len(benchmarks) == 0: print("No benchmarks found. Adding sample benchmarks...") num_added = add_sample_benchmarks() print(f"Added {num_added} sample benchmarks.") # Custom CSS css = """ .info-text { background-color: #f0f7ff; padding: 12px; border-radius: 8px; border-left: 4px solid #3498db; margin: 12px 0; } .container { max-width: 1200px; margin: 0 auto; } .header { text-align: center; margin-bottom: 20px; } .footer { text-align: center; margin-top: 40px; padding: 20px; border-top: 1px solid #eee; } """ # Create Gradio app with gr.Blocks(css=css, title="Dynamic Highscores") as app: gr.Markdown("# 🏆 Dynamic Highscores", elem_classes=["header"]) gr.Markdown(""" Welcome to Dynamic Highscores - a community benchmark platform for evaluating and comparing language models. - **Add your own benchmarks** from HuggingFace datasets - **Submit your models** for CPU-only evaluation - **Compare performance** across different models and benchmarks - **Filter results** by model type (Merge, Agent, Reasoning, Coding, etc.) """, elem_classes=["info-text"]) # Authentication UI login_button, logout_button, token_input, user_info = create_login_ui() setup_auth_handlers(login_button, logout_button, token_input, user_info, auth_manager) # Main tabs with gr.Tabs() as tabs: with gr.TabItem("📊 Leaderboard", id=0): # Fix: Pass db_manager parameter to create_leaderboard_ui leaderboard_ui = create_leaderboard_ui(leaderboard, db) with gr.TabItem("🚀 Submit Model", id=1): submission_ui = create_model_submission_ui(evaluation_queue, auth_manager, db) with gr.TabItem("🔍 Benchmarks", id=2): benchmark_ui = create_benchmark_selection_ui(benchmark_selector, auth_manager) gr.Markdown(""" ### About Dynamic Highscores This platform allows users to select benchmarks from HuggingFace datasets and evaluate models against them. Each user can submit one benchmark per day (admin users are exempt from this limit). All evaluations run on CPU only to ensure fair comparisons. Created by Quazim0t0 """, elem_classes=["footer"]) # Start evaluation queue worker after app is defined # This prevents the worker from starting before the app is fully initialized def start_queue_worker(): # Wait a moment to ensure app is initialized import time time.sleep(2) evaluation_queue.start_worker() # Launch the app if __name__ == "__main__": # Start queue worker in a separate thread to avoid SQLite thread issues queue_thread = threading.Thread(target=start_queue_worker) queue_thread.daemon = True queue_thread.start() app.launch()