""" Benchmark selection module for Dynamic Highscores system. This module handles browsing, selection, and loading of HuggingFace datasets to be used as benchmarks for model evaluation. """ import os import json import gradio as gr from huggingface_hub import HfApi, list_datasets from datasets import load_dataset, get_dataset_config_names from functools import partial class BenchmarkSelector: """Benchmark selection manager for HuggingFace datasets.""" def __init__(self, db_manager, auth_manager): """Initialize the benchmark selector. Args: db_manager: Database manager instance for benchmark storage auth_manager: Authentication manager instance for access control """ self.db_manager = db_manager self.auth_manager = auth_manager self.hf_api = HfApi() # Common benchmark categories for filtering self.categories = [ "All", "Text Generation", "Question Answering", "Summarization", "Translation", "Classification", "Code Generation", "Reasoning", "Math" ] # Common metrics for different benchmark types self.metric_templates = { "Text Generation": ["bleu", "rouge", "meteor"], "Question Answering": ["exact_match", "f1"], "Summarization": ["rouge1", "rouge2", "rougeL"], "Translation": ["bleu", "ter"], "Classification": ["accuracy", "f1", "precision", "recall"], "Code Generation": ["exact_match", "pass@k", "functional_correctness"], "Reasoning": ["accuracy", "consistency"], "Math": ["accuracy", "correct_steps"] } def search_datasets(self, query, category="All", limit=50): """Search for datasets on HuggingFace. Args: query: Search query string category: Dataset category to filter by limit: Maximum number of results to return Returns: list: List of dataset information dictionaries """ try: # Apply category filter if not "All" filter_str = None if category != "All": filter_str = f"task_categories:{category}" # Search for datasets datasets = list_datasets( search=query, filter=filter_str, limit=limit ) # Format results results = [] for dataset in datasets: # Handle cases where description might be missing dataset_description = "" if hasattr(dataset, 'description') and dataset.description: dataset_description = dataset.description[:200] + "..." if len(dataset.description) > 200 else dataset.description # Handle cases where tags might be missing dataset_tags = [] if hasattr(dataset, 'tags'): dataset_tags = dataset.tags # Handle cases where downloads might be missing dataset_downloads = 0 if hasattr(dataset, 'downloads'): dataset_downloads = dataset.downloads # Handle cases where author might be missing dataset_author = "" if hasattr(dataset, 'author'): dataset_author = dataset.author results.append({ "id": dataset.id, "name": dataset.id.split("/")[-1], "author": dataset_author, "description": dataset_description, "tags": dataset_tags, "downloads": dataset_downloads }) return results except Exception as e: print(f"Dataset search error: {e}") return [] def get_dataset_info(self, dataset_id): """Get detailed information about a dataset. Args: dataset_id: HuggingFace dataset ID Returns: dict: Dataset information """ try: # Get dataset info from HuggingFace dataset_info = self.hf_api.dataset_info(dataset_id) # Get available configurations configs = [] try: configs = get_dataset_config_names(dataset_id) except Exception as e: print(f"Error getting dataset configs: {e}") # Handle missing attributes safely dataset_description = "" if hasattr(dataset_info, 'description'): dataset_description = dataset_info.description dataset_citation = "" if hasattr(dataset_info, 'citation'): dataset_citation = dataset_info.citation dataset_tags = [] if hasattr(dataset_info, 'tags'): dataset_tags = dataset_info.tags dataset_downloads = 0 if hasattr(dataset_info, 'downloads'): dataset_downloads = dataset_info.downloads dataset_author = "" if hasattr(dataset_info, 'author'): dataset_author = dataset_info.author # Format result result = { "id": dataset_info.id, "name": dataset_info.id.split("/")[-1], "author": dataset_author, "description": dataset_description, "citation": dataset_citation, "configs": configs, "tags": dataset_tags, "downloads": dataset_downloads } return result except Exception as e: print(f"Dataset info error: {e}") return None def load_dataset_sample(self, dataset_id, config=None, split="train", sample_size=5): """Load a sample from a dataset. Args: dataset_id: HuggingFace dataset ID config: Dataset configuration name split: Dataset split to sample from sample_size: Number of samples to load Returns: dict: Dataset sample information """ try: # Load dataset if config: dataset = load_dataset(dataset_id, config, split=split) else: dataset = load_dataset(dataset_id, split=split) # Get sample if len(dataset) > sample_size: sample = dataset.select(range(sample_size)) else: sample = dataset # Get features features = list(sample.features.keys()) # Convert sample to list of dictionaries sample_data = [] for item in sample: sample_item = {} for key in features: # Convert non-serializable values to strings if isinstance(item[key], (list, dict)): sample_item[key] = str(item[key]) else: sample_item[key] = item[key] sample_data.append(sample_item) # Format result result = { "id": dataset_id, "config": config, "split": split, "features": features, "sample": sample_data, "total_size": len(dataset) } return result except Exception as e: print(f"Dataset sample error: {e}") return None def add_benchmark(self, dataset_id, name=None, description=None, metrics=None, config=None): """Add a dataset as a benchmark. Args: dataset_id: HuggingFace dataset ID name: Benchmark name (defaults to dataset name) description: Benchmark description (defaults to dataset description) metrics: Metrics to use for evaluation config: Dataset configuration to use Returns: int: Benchmark ID if successful, None otherwise """ try: # Get dataset info if name or description not provided if not name or not description: dataset_info = self.get_dataset_info(dataset_id) if not dataset_info: return None if not name: name = dataset_info["name"] if not description: description = dataset_info["description"] # Format dataset ID with config if provided full_dataset_id = dataset_id if config: full_dataset_id = f"{dataset_id}:{config}" # Add benchmark to database benchmark_id = self.db_manager.add_benchmark( name=name, dataset_id=full_dataset_id, description=description, metrics=metrics ) return benchmark_id except Exception as e: print(f"Add benchmark error: {e}") return None def get_benchmarks(self): """Get all available benchmarks. Returns: list: List of benchmark information dictionaries """ return self.db_manager.get_benchmarks() # Benchmark selection UI components def create_benchmark_selection_ui(benchmark_selector, auth_manager): """Create the benchmark selection UI components. Args: benchmark_selector: Benchmark selector instance auth_manager: Authentication manager instance Returns: gr.Blocks: Gradio Blocks component with benchmark selection UI """ with gr.Blocks() as benchmark_ui: gr.Markdown("## 📊 Dynamic Highscores Benchmark Selection") gr.Markdown(""" ### Add your own datasets from HuggingFace as benchmarks! You can add any dataset from HuggingFace to use as a benchmark for evaluating models. Simply enter the dataset ID (e.g., 'squad', 'glue', 'hellaswag') and add it as a benchmark. Other users will be able to select your added benchmarks for their model evaluations. """, elem_classes=["info-text"]) with gr.Tabs() as tabs: with gr.TabItem("➕ Add New Benchmark", id=0): with gr.Row(): with gr.Column(scale=3): search_input = gr.Textbox( placeholder="Search for datasets on HuggingFace...", label="Search", show_label=False ) with gr.Column(scale=1): category_dropdown = gr.Dropdown( choices=benchmark_selector.categories, value="All", label="Category" ) with gr.Column(scale=1): search_button = gr.Button("Search") dataset_results = gr.Dataframe( headers=["Name", "Author", "Description", "Downloads"], datatype=["str", "str", "str", "number"], label="Search Results", interactive=True ) with gr.Row(): with gr.Column(scale=2): dataset_id_input = gr.Textbox( placeholder="Enter HuggingFace dataset ID (e.g., 'squad', 'glue', 'hellaswag')", label="Dataset ID", info="You can enter any dataset ID from HuggingFace" ) with gr.Column(scale=1): view_button = gr.Button("View Dataset Details") with gr.Accordion("Dataset Details", open=False): dataset_info = gr.JSON(label="Dataset Information") with gr.Row(): config_dropdown = gr.Dropdown( label="Configuration", choices=[], interactive=True ) split_dropdown = gr.Dropdown( label="Split", choices=["train", "validation", "test"], value="train", interactive=True ) sample_button = gr.Button("Load Sample") sample_data = gr.Dataframe( label="Sample Data", interactive=False ) gr.Markdown("### Add this dataset as a benchmark") with gr.Row(): with gr.Column(scale=2): benchmark_name = gr.Textbox( placeholder="Enter a name for this benchmark", label="Benchmark Name", info="A descriptive name for this benchmark" ) benchmark_description = gr.Textbox( placeholder="Enter a description for this benchmark", label="Description", info="Explain what this benchmark evaluates", lines=3 ) with gr.Column(scale=1): metrics_input = gr.CheckboxGroup( label="Evaluation Metrics", choices=[], interactive=True, info="Select metrics to use for evaluation" ) with gr.Row(): add_benchmark_button = gr.Button("Add as Benchmark", size="lg", variant="primary") benchmark_status = gr.Markdown("") with gr.TabItem("📋 Available Benchmarks", id=1): gr.Markdown("### Benchmarks available for model evaluation") gr.Markdown("These benchmarks can be selected when submitting models for evaluation.") with gr.Row(): refresh_benchmarks_button = gr.Button("Refresh Benchmarks") reload_sample_benchmarks_button = gr.Button("Reload Sample Benchmarks", variant="secondary") reload_status = gr.Markdown("") benchmarks_container = gr.Column() with benchmarks_container: no_benchmarks_message = gr.Markdown( "### No Datasets Added Yet\n\nBe the first to add a benchmark dataset! Go to the 'Add New Benchmark' tab to add a dataset from HuggingFace.", visible=True ) my_benchmarks = gr.Dataframe( headers=["ID", "Name", "Dataset", "Description"], label="Available Benchmarks", interactive=True, visible=False ) # Event handlers def search_datasets_handler(query, category): if not query: return None results = benchmark_selector.search_datasets(query, category) # Format for dataframe formatted_results = [] for result in results: formatted_results.append([ result["name"], result["author"], result["description"], result["downloads"] ]) return formatted_results def view_dataset_handler(dataset_id): if not dataset_id: return None, [], None dataset_info = benchmark_selector.get_dataset_info(dataset_id) if not dataset_info: return None, [], None # Update metrics based on dataset tags metrics = [] for category, category_metrics in benchmark_selector.metric_templates.items(): if any(tag.lower() in [t.lower() for t in dataset_info["tags"]] for tag in category.lower().split()): metrics.extend(category_metrics) # Remove duplicates metrics = list(set(metrics)) return dataset_info, dataset_info["configs"], gr.update(choices=metrics) def load_sample_handler(dataset_id, config, split): if not dataset_id: return None sample_info = benchmark_selector.load_dataset_sample( dataset_id, config=config if config else None, split=split ) if not sample_info: return None return sample_info["sample"] def add_benchmark_handler(dataset_id, config, name, description, metrics, request: gr.Request): if not dataset_id: return "Please enter a dataset ID from HuggingFace." # Check if user is logged in user = auth_manager.check_login(request) if not user: return "Please log in to add benchmarks." # Add benchmark benchmark_id = benchmark_selector.add_benchmark( dataset_id=dataset_id, name=name if name else None, description=description if description else None, metrics=metrics if metrics else None, config=config if config else None ) if benchmark_id: return f"✅ Benchmark added successfully with ID: {benchmark_id}\n\nThis dataset is now available for model evaluation. You can view it in the 'Available Benchmarks' tab." else: return "❌ Failed to add benchmark. Please check the dataset ID and try again." def get_benchmarks_handler(request: gr.Request): # Check if user is logged in user = auth_manager.check_login(request) if not user: return gr.update(visible=True), gr.update(visible=False), None # Get benchmarks benchmarks = benchmark_selector.get_benchmarks() # If no benchmarks, show message if not benchmarks or len(benchmarks) == 0: return gr.update(visible=True), gr.update(visible=False), None # Format for dataframe formatted_benchmarks = [] for benchmark in benchmarks: formatted_benchmarks.append([ benchmark["id"], benchmark["name"], benchmark["dataset_id"], benchmark["description"] ]) return gr.update(visible=False), gr.update(visible=True), formatted_benchmarks def reload_sample_benchmarks_handler(): try: from sample_benchmarks import add_sample_benchmarks num_added = add_sample_benchmarks() return f"✅ Successfully reloaded {num_added} sample benchmarks." except Exception as e: return f"❌ Error reloading benchmarks: {str(e)}" # Connect event handlers search_button.click( fn=search_datasets_handler, inputs=[search_input, category_dropdown], outputs=[dataset_results] ) view_button.click( fn=view_dataset_handler, inputs=[dataset_id_input], outputs=[dataset_info, config_dropdown, metrics_input] ) sample_button.click( fn=load_sample_handler, inputs=[dataset_id_input, config_dropdown, split_dropdown], outputs=[sample_data] ) add_benchmark_button.click( fn=add_benchmark_handler, inputs=[dataset_id_input, config_dropdown, benchmark_name, benchmark_description, metrics_input], outputs=[benchmark_status] ) refresh_benchmarks_button.click( fn=get_benchmarks_handler, inputs=[], outputs=[no_benchmarks_message, my_benchmarks, my_benchmarks] ) reload_sample_benchmarks_button.click( fn=reload_sample_benchmarks_handler, inputs=[], outputs=[reload_status] ) # Initialize benchmarks on load benchmark_ui.load( fn=get_benchmarks_handler, inputs=[], outputs=[no_benchmarks_message, my_benchmarks, my_benchmarks] ) return benchmark_ui