Delete benchmark_selection.py
Browse files- benchmark_selection.py +0 -511
benchmark_selection.py
DELETED
@@ -1,511 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Benchmark selection module for Dynamic Highscores system.
|
3 |
-
|
4 |
-
This module handles browsing, selection, and loading of HuggingFace datasets
|
5 |
-
to be used as benchmarks for model evaluation.
|
6 |
-
"""
|
7 |
-
|
8 |
-
import os
|
9 |
-
import json
|
10 |
-
import gradio as gr
|
11 |
-
from huggingface_hub import HfApi, list_datasets
|
12 |
-
from datasets import load_dataset, get_dataset_config_names
|
13 |
-
from functools import partial
|
14 |
-
|
15 |
-
class BenchmarkSelector:
|
16 |
-
"""Benchmark selection manager for HuggingFace datasets."""
|
17 |
-
|
18 |
-
def __init__(self, db_manager, auth_manager):
|
19 |
-
"""Initialize the benchmark selector.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
db_manager: Database manager instance for benchmark storage
|
23 |
-
auth_manager: Authentication manager instance for access control
|
24 |
-
"""
|
25 |
-
self.db_manager = db_manager
|
26 |
-
self.auth_manager = auth_manager
|
27 |
-
self.hf_api = HfApi()
|
28 |
-
|
29 |
-
# Common benchmark categories for filtering
|
30 |
-
self.categories = [
|
31 |
-
"All",
|
32 |
-
"Text Generation",
|
33 |
-
"Question Answering",
|
34 |
-
"Summarization",
|
35 |
-
"Translation",
|
36 |
-
"Classification",
|
37 |
-
"Code Generation",
|
38 |
-
"Reasoning",
|
39 |
-
"Math"
|
40 |
-
]
|
41 |
-
|
42 |
-
# Common metrics for different benchmark types
|
43 |
-
self.metric_templates = {
|
44 |
-
"Text Generation": ["bleu", "rouge", "meteor"],
|
45 |
-
"Question Answering": ["exact_match", "f1"],
|
46 |
-
"Summarization": ["rouge1", "rouge2", "rougeL"],
|
47 |
-
"Translation": ["bleu", "ter"],
|
48 |
-
"Classification": ["accuracy", "f1", "precision", "recall"],
|
49 |
-
"Code Generation": ["exact_match", "pass@k", "functional_correctness"],
|
50 |
-
"Reasoning": ["accuracy", "consistency"],
|
51 |
-
"Math": ["accuracy", "correct_steps"]
|
52 |
-
}
|
53 |
-
|
54 |
-
def search_datasets(self, query, category="All", limit=50):
|
55 |
-
"""Search for datasets on HuggingFace.
|
56 |
-
|
57 |
-
Args:
|
58 |
-
query: Search query string
|
59 |
-
category: Dataset category to filter by
|
60 |
-
limit: Maximum number of results to return
|
61 |
-
|
62 |
-
Returns:
|
63 |
-
list: List of dataset information dictionaries
|
64 |
-
"""
|
65 |
-
try:
|
66 |
-
# Apply category filter if not "All"
|
67 |
-
filter_str = None
|
68 |
-
if category != "All":
|
69 |
-
filter_str = f"task_categories:{category}"
|
70 |
-
|
71 |
-
# Search for datasets
|
72 |
-
datasets = list_datasets(
|
73 |
-
search=query,
|
74 |
-
filter=filter_str,
|
75 |
-
limit=limit
|
76 |
-
)
|
77 |
-
|
78 |
-
# Format results
|
79 |
-
results = []
|
80 |
-
for dataset in datasets:
|
81 |
-
results.append({
|
82 |
-
"id": dataset.id,
|
83 |
-
"name": dataset.id.split("/")[-1],
|
84 |
-
"author": dataset.author,
|
85 |
-
"description": dataset.description[:200] + "..." if dataset.description and len(dataset.description) > 200 else dataset.description,
|
86 |
-
"tags": dataset.tags,
|
87 |
-
"downloads": dataset.downloads
|
88 |
-
})
|
89 |
-
|
90 |
-
return results
|
91 |
-
except Exception as e:
|
92 |
-
print(f"Dataset search error: {e}")
|
93 |
-
return []
|
94 |
-
|
95 |
-
def get_dataset_info(self, dataset_id):
|
96 |
-
"""Get detailed information about a dataset.
|
97 |
-
|
98 |
-
Args:
|
99 |
-
dataset_id: HuggingFace dataset ID
|
100 |
-
|
101 |
-
Returns:
|
102 |
-
dict: Dataset information
|
103 |
-
"""
|
104 |
-
try:
|
105 |
-
# Get dataset info from HuggingFace
|
106 |
-
dataset_info = self.hf_api.dataset_info(dataset_id)
|
107 |
-
|
108 |
-
# Get available configurations
|
109 |
-
configs = get_dataset_config_names(dataset_id)
|
110 |
-
|
111 |
-
# Format result
|
112 |
-
result = {
|
113 |
-
"id": dataset_info.id,
|
114 |
-
"name": dataset_info.id.split("/")[-1],
|
115 |
-
"author": dataset_info.author,
|
116 |
-
"description": dataset_info.description,
|
117 |
-
"citation": dataset_info.citation,
|
118 |
-
"configs": configs,
|
119 |
-
"tags": dataset_info.tags,
|
120 |
-
"downloads": dataset_info.downloads
|
121 |
-
}
|
122 |
-
|
123 |
-
return result
|
124 |
-
except Exception as e:
|
125 |
-
print(f"Dataset info error: {e}")
|
126 |
-
return None
|
127 |
-
|
128 |
-
def load_dataset_sample(self, dataset_id, config=None, split="train", sample_size=5):
|
129 |
-
"""Load a sample from a dataset.
|
130 |
-
|
131 |
-
Args:
|
132 |
-
dataset_id: HuggingFace dataset ID
|
133 |
-
config: Dataset configuration name
|
134 |
-
split: Dataset split to sample from
|
135 |
-
sample_size: Number of samples to load
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
dict: Dataset sample information
|
139 |
-
"""
|
140 |
-
try:
|
141 |
-
# Load dataset
|
142 |
-
if config:
|
143 |
-
dataset = load_dataset(dataset_id, config, split=split)
|
144 |
-
else:
|
145 |
-
dataset = load_dataset(dataset_id, split=split)
|
146 |
-
|
147 |
-
# Get sample
|
148 |
-
if len(dataset) > sample_size:
|
149 |
-
sample = dataset.select(range(sample_size))
|
150 |
-
else:
|
151 |
-
sample = dataset
|
152 |
-
|
153 |
-
# Get features
|
154 |
-
features = list(sample.features.keys())
|
155 |
-
|
156 |
-
# Convert sample to list of dictionaries
|
157 |
-
sample_data = []
|
158 |
-
for item in sample:
|
159 |
-
sample_item = {}
|
160 |
-
for key in features:
|
161 |
-
# Convert non-serializable values to strings
|
162 |
-
if isinstance(item[key], (list, dict)):
|
163 |
-
sample_item[key] = str(item[key])
|
164 |
-
else:
|
165 |
-
sample_item[key] = item[key]
|
166 |
-
sample_data.append(sample_item)
|
167 |
-
|
168 |
-
# Format result
|
169 |
-
result = {
|
170 |
-
"id": dataset_id,
|
171 |
-
"config": config,
|
172 |
-
"split": split,
|
173 |
-
"features": features,
|
174 |
-
"sample": sample_data,
|
175 |
-
"total_size": len(dataset)
|
176 |
-
}
|
177 |
-
|
178 |
-
return result
|
179 |
-
except Exception as e:
|
180 |
-
print(f"Dataset sample error: {e}")
|
181 |
-
return None
|
182 |
-
|
183 |
-
def add_benchmark(self, dataset_id, name=None, description=None, metrics=None, config=None):
|
184 |
-
"""Add a dataset as a benchmark.
|
185 |
-
|
186 |
-
Args:
|
187 |
-
dataset_id: HuggingFace dataset ID
|
188 |
-
name: Benchmark name (defaults to dataset name)
|
189 |
-
description: Benchmark description (defaults to dataset description)
|
190 |
-
metrics: Metrics to use for evaluation
|
191 |
-
config: Dataset configuration to use
|
192 |
-
|
193 |
-
Returns:
|
194 |
-
int: Benchmark ID if successful, None otherwise
|
195 |
-
"""
|
196 |
-
try:
|
197 |
-
# Get dataset info if name or description not provided
|
198 |
-
if not name or not description:
|
199 |
-
dataset_info = self.get_dataset_info(dataset_id)
|
200 |
-
if not dataset_info:
|
201 |
-
return None
|
202 |
-
|
203 |
-
if not name:
|
204 |
-
name = dataset_info["name"]
|
205 |
-
|
206 |
-
if not description:
|
207 |
-
description = dataset_info["description"]
|
208 |
-
|
209 |
-
# Format dataset ID with config if provided
|
210 |
-
full_dataset_id = dataset_id
|
211 |
-
if config:
|
212 |
-
full_dataset_id = f"{dataset_id}:{config}"
|
213 |
-
|
214 |
-
# Add benchmark to database
|
215 |
-
benchmark_id = self.db_manager.add_benchmark(
|
216 |
-
name=name,
|
217 |
-
dataset_id=full_dataset_id,
|
218 |
-
description=description,
|
219 |
-
metrics=metrics
|
220 |
-
)
|
221 |
-
|
222 |
-
return benchmark_id
|
223 |
-
except Exception as e:
|
224 |
-
print(f"Add benchmark error: {e}")
|
225 |
-
return None
|
226 |
-
|
227 |
-
def get_benchmarks(self):
|
228 |
-
"""Get all available benchmarks.
|
229 |
-
|
230 |
-
Returns:
|
231 |
-
list: List of benchmark information dictionaries
|
232 |
-
"""
|
233 |
-
return self.db_manager.get_benchmarks()
|
234 |
-
|
235 |
-
# Benchmark selection UI components
|
236 |
-
def create_benchmark_selection_ui(benchmark_selector, auth_manager):
|
237 |
-
"""Create the benchmark selection UI components.
|
238 |
-
|
239 |
-
Args:
|
240 |
-
benchmark_selector: Benchmark selector instance
|
241 |
-
auth_manager: Authentication manager instance
|
242 |
-
|
243 |
-
Returns:
|
244 |
-
gr.Blocks: Gradio Blocks component with benchmark selection UI
|
245 |
-
"""
|
246 |
-
with gr.Blocks() as benchmark_ui:
|
247 |
-
gr.Markdown("## 📊 Dynamic Highscores Benchmark Selection")
|
248 |
-
gr.Markdown("""
|
249 |
-
### Add your own datasets from HuggingFace as benchmarks!
|
250 |
-
|
251 |
-
You can add any dataset from HuggingFace to use as a benchmark for evaluating models.
|
252 |
-
Simply enter the dataset ID (e.g., 'squad', 'glue', 'hellaswag') and add it as a benchmark.
|
253 |
-
|
254 |
-
Other users will be able to select your added benchmarks for their model evaluations.
|
255 |
-
""", elem_classes=["info-text"])
|
256 |
-
|
257 |
-
with gr.Tabs() as tabs:
|
258 |
-
with gr.TabItem("➕ Add New Benchmark", id=0):
|
259 |
-
with gr.Row():
|
260 |
-
with gr.Column(scale=3):
|
261 |
-
search_input = gr.Textbox(
|
262 |
-
placeholder="Search for datasets on HuggingFace...",
|
263 |
-
label="Search",
|
264 |
-
show_label=False
|
265 |
-
)
|
266 |
-
|
267 |
-
with gr.Column(scale=1):
|
268 |
-
category_dropdown = gr.Dropdown(
|
269 |
-
choices=benchmark_selector.categories,
|
270 |
-
value="All",
|
271 |
-
label="Category"
|
272 |
-
)
|
273 |
-
|
274 |
-
with gr.Column(scale=1):
|
275 |
-
search_button = gr.Button("Search")
|
276 |
-
|
277 |
-
dataset_results = gr.Dataframe(
|
278 |
-
headers=["Name", "Author", "Description", "Downloads"],
|
279 |
-
datatype=["str", "str", "str", "number"],
|
280 |
-
label="Search Results",
|
281 |
-
interactive=True
|
282 |
-
)
|
283 |
-
|
284 |
-
with gr.Row():
|
285 |
-
with gr.Column(scale=2):
|
286 |
-
dataset_id_input = gr.Textbox(
|
287 |
-
placeholder="Enter HuggingFace dataset ID (e.g., 'squad', 'glue', 'hellaswag')",
|
288 |
-
label="Dataset ID",
|
289 |
-
info="You can enter any dataset ID from HuggingFace"
|
290 |
-
)
|
291 |
-
|
292 |
-
with gr.Column(scale=1):
|
293 |
-
view_button = gr.Button("View Dataset Details")
|
294 |
-
|
295 |
-
with gr.Accordion("Dataset Details", open=False):
|
296 |
-
dataset_info = gr.JSON(label="Dataset Information")
|
297 |
-
|
298 |
-
with gr.Row():
|
299 |
-
config_dropdown = gr.Dropdown(
|
300 |
-
label="Configuration",
|
301 |
-
choices=[],
|
302 |
-
interactive=True
|
303 |
-
)
|
304 |
-
|
305 |
-
split_dropdown = gr.Dropdown(
|
306 |
-
label="Split",
|
307 |
-
choices=["train", "validation", "test"],
|
308 |
-
value="train",
|
309 |
-
interactive=True
|
310 |
-
)
|
311 |
-
|
312 |
-
sample_button = gr.Button("Load Sample")
|
313 |
-
|
314 |
-
sample_data = gr.Dataframe(
|
315 |
-
label="Sample Data",
|
316 |
-
interactive=False
|
317 |
-
)
|
318 |
-
|
319 |
-
gr.Markdown("### Add this dataset as a benchmark")
|
320 |
-
with gr.Row():
|
321 |
-
with gr.Column(scale=2):
|
322 |
-
benchmark_name = gr.Textbox(
|
323 |
-
placeholder="Enter a name for this benchmark",
|
324 |
-
label="Benchmark Name",
|
325 |
-
info="A descriptive name for this benchmark"
|
326 |
-
)
|
327 |
-
|
328 |
-
benchmark_description = gr.Textbox(
|
329 |
-
placeholder="Enter a description for this benchmark",
|
330 |
-
label="Description",
|
331 |
-
info="Explain what this benchmark evaluates",
|
332 |
-
lines=3
|
333 |
-
)
|
334 |
-
|
335 |
-
with gr.Column(scale=1):
|
336 |
-
metrics_input = gr.CheckboxGroup(
|
337 |
-
label="Evaluation Metrics",
|
338 |
-
choices=[],
|
339 |
-
interactive=True,
|
340 |
-
info="Select metrics to use for evaluation"
|
341 |
-
)
|
342 |
-
|
343 |
-
with gr.Row():
|
344 |
-
add_benchmark_button = gr.Button("Add as Benchmark", size="lg", variant="primary")
|
345 |
-
|
346 |
-
benchmark_status = gr.Markdown("")
|
347 |
-
|
348 |
-
with gr.TabItem("📋 Available Benchmarks", id=1):
|
349 |
-
gr.Markdown("### Benchmarks available for model evaluation")
|
350 |
-
gr.Markdown("These benchmarks can be selected when submitting models for evaluation.")
|
351 |
-
|
352 |
-
with gr.Row():
|
353 |
-
refresh_benchmarks_button = gr.Button("Refresh Benchmarks")
|
354 |
-
|
355 |
-
benchmarks_container = gr.Column()
|
356 |
-
with benchmarks_container:
|
357 |
-
no_benchmarks_message = gr.Markdown(
|
358 |
-
"### No Datasets Added Yet\n\nBe the first to add a benchmark dataset! Go to the 'Add New Benchmark' tab to add a dataset from HuggingFace.",
|
359 |
-
visible=True
|
360 |
-
)
|
361 |
-
|
362 |
-
my_benchmarks = gr.Dataframe(
|
363 |
-
headers=["ID", "Name", "Dataset", "Description"],
|
364 |
-
label="Available Benchmarks",
|
365 |
-
interactive=True,
|
366 |
-
visible=False
|
367 |
-
)
|
368 |
-
|
369 |
-
# Event handlers
|
370 |
-
def search_datasets_handler(query, category):
|
371 |
-
if not query:
|
372 |
-
return None
|
373 |
-
|
374 |
-
results = benchmark_selector.search_datasets(query, category)
|
375 |
-
|
376 |
-
# Format for dataframe
|
377 |
-
formatted_results = []
|
378 |
-
for result in results:
|
379 |
-
formatted_results.append([
|
380 |
-
result["name"],
|
381 |
-
result["author"],
|
382 |
-
result["description"],
|
383 |
-
result["downloads"]
|
384 |
-
])
|
385 |
-
|
386 |
-
return formatted_results
|
387 |
-
|
388 |
-
def view_dataset_handler(dataset_id):
|
389 |
-
if not dataset_id:
|
390 |
-
return None, [], None
|
391 |
-
|
392 |
-
dataset_info = benchmark_selector.get_dataset_info(dataset_id)
|
393 |
-
|
394 |
-
if not dataset_info:
|
395 |
-
return None, [], None
|
396 |
-
|
397 |
-
# Update metrics based on dataset tags
|
398 |
-
metrics = []
|
399 |
-
for category, category_metrics in benchmark_selector.metric_templates.items():
|
400 |
-
if any(tag.lower() in [t.lower() for t in dataset_info["tags"]] for tag in category.lower().split()):
|
401 |
-
metrics.extend(category_metrics)
|
402 |
-
|
403 |
-
# Remove duplicates
|
404 |
-
metrics = list(set(metrics))
|
405 |
-
|
406 |
-
return dataset_info, dataset_info["configs"], gr.update(choices=metrics)
|
407 |
-
|
408 |
-
def load_sample_handler(dataset_id, config, split):
|
409 |
-
if not dataset_id:
|
410 |
-
return None
|
411 |
-
|
412 |
-
sample_info = benchmark_selector.load_dataset_sample(
|
413 |
-
dataset_id,
|
414 |
-
config=config if config else None,
|
415 |
-
split=split
|
416 |
-
)
|
417 |
-
|
418 |
-
if not sample_info:
|
419 |
-
return None
|
420 |
-
|
421 |
-
return sample_info["sample"]
|
422 |
-
|
423 |
-
def add_benchmark_handler(dataset_id, config, name, description, metrics, request: gr.Request):
|
424 |
-
if not dataset_id:
|
425 |
-
return "Please enter a dataset ID from HuggingFace."
|
426 |
-
|
427 |
-
# Check if user is logged in
|
428 |
-
user = auth_manager.check_login(request)
|
429 |
-
|
430 |
-
if not user:
|
431 |
-
return "Please log in to add benchmarks."
|
432 |
-
|
433 |
-
# Add benchmark
|
434 |
-
benchmark_id = benchmark_selector.add_benchmark(
|
435 |
-
dataset_id=dataset_id,
|
436 |
-
name=name if name else None,
|
437 |
-
description=description if description else None,
|
438 |
-
metrics=metrics if metrics else None,
|
439 |
-
config=config if config else None
|
440 |
-
)
|
441 |
-
|
442 |
-
if benchmark_id:
|
443 |
-
return f"✅ Benchmark added successfully with ID: {benchmark_id}\n\nThis dataset is now available for model evaluation. You can view it in the 'Available Benchmarks' tab."
|
444 |
-
else:
|
445 |
-
return "❌ Failed to add benchmark. Please check the dataset ID and try again."
|
446 |
-
|
447 |
-
def get_benchmarks_handler(request: gr.Request):
|
448 |
-
# Check if user is logged in
|
449 |
-
user = auth_manager.check_login(request)
|
450 |
-
|
451 |
-
if not user:
|
452 |
-
return gr.update(visible=True), gr.update(visible=False), None
|
453 |
-
|
454 |
-
# Get benchmarks
|
455 |
-
benchmarks = benchmark_selector.get_benchmarks()
|
456 |
-
|
457 |
-
# If no benchmarks, show message
|
458 |
-
if not benchmarks or len(benchmarks) == 0:
|
459 |
-
return gr.update(visible=True), gr.update(visible=False), None
|
460 |
-
|
461 |
-
# Format for dataframe
|
462 |
-
formatted_benchmarks = []
|
463 |
-
for benchmark in benchmarks:
|
464 |
-
formatted_benchmarks.append([
|
465 |
-
benchmark["id"],
|
466 |
-
benchmark["name"],
|
467 |
-
benchmark["dataset_id"],
|
468 |
-
benchmark["description"]
|
469 |
-
])
|
470 |
-
|
471 |
-
return gr.update(visible=False), gr.update(visible=True), formatted_benchmarks
|
472 |
-
|
473 |
-
# Connect event handlers
|
474 |
-
search_button.click(
|
475 |
-
fn=search_datasets_handler,
|
476 |
-
inputs=[search_input, category_dropdown],
|
477 |
-
outputs=[dataset_results]
|
478 |
-
)
|
479 |
-
|
480 |
-
view_button.click(
|
481 |
-
fn=view_dataset_handler,
|
482 |
-
inputs=[dataset_id_input],
|
483 |
-
outputs=[dataset_info, config_dropdown, metrics_input]
|
484 |
-
)
|
485 |
-
|
486 |
-
sample_button.click(
|
487 |
-
fn=load_sample_handler,
|
488 |
-
inputs=[dataset_id_input, config_dropdown, split_dropdown],
|
489 |
-
outputs=[sample_data]
|
490 |
-
)
|
491 |
-
|
492 |
-
add_benchmark_button.click(
|
493 |
-
fn=add_benchmark_handler,
|
494 |
-
inputs=[dataset_id_input, config_dropdown, benchmark_name, benchmark_description, metrics_input],
|
495 |
-
outputs=[benchmark_status]
|
496 |
-
)
|
497 |
-
|
498 |
-
refresh_benchmarks_button.click(
|
499 |
-
fn=get_benchmarks_handler,
|
500 |
-
inputs=[],
|
501 |
-
outputs=[no_benchmarks_message, my_benchmarks, my_benchmarks]
|
502 |
-
)
|
503 |
-
|
504 |
-
# Initialize benchmarks on load
|
505 |
-
benchmark_ui.load(
|
506 |
-
fn=get_benchmarks_handler,
|
507 |
-
inputs=[],
|
508 |
-
outputs=[no_benchmarks_message, my_benchmarks, my_benchmarks]
|
509 |
-
)
|
510 |
-
|
511 |
-
return benchmark_ui
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|