Update evaluation_queue.py
Browse files- evaluation_queue.py +797 -3
evaluation_queue.py
CHANGED
@@ -1,8 +1,802 @@
|
|
1 |
"""
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
"""
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
7 |
"""Create the model submission UI components.
|
8 |
|
@@ -107,7 +901,7 @@ def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
|
107 |
|
108 |
def refresh_benchmarks_handler():
|
109 |
benchmarks = db_manager.get_benchmarks()
|
110 |
-
|
111 |
# Format for dropdown - properly formatted to display names
|
112 |
choices = []
|
113 |
for b in benchmarks:
|
|
|
1 |
"""
|
2 |
+
Model evaluation queue system for Dynamic Highscores.
|
3 |
+
|
4 |
+
This module handles the evaluation queue, CPU-only processing,
|
5 |
+
and enforces daily submission limits for users.
|
6 |
"""
|
7 |
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import time
|
11 |
+
import threading
|
12 |
+
import queue as queue_module
|
13 |
+
from datetime import datetime, timedelta
|
14 |
+
import gradio as gr
|
15 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
16 |
+
from datasets import load_dataset
|
17 |
+
import torch
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
19 |
+
import sqlite3
|
20 |
+
|
21 |
+
class EvaluationQueue:
|
22 |
+
"""Manages the evaluation queue for model benchmarking."""
|
23 |
+
|
24 |
+
def __init__(self, db_manager, auth_manager):
|
25 |
+
"""Initialize the evaluation queue manager.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
db_manager: Database manager instance
|
29 |
+
auth_manager: Authentication manager instance
|
30 |
+
"""
|
31 |
+
self.db_manager = db_manager
|
32 |
+
self.auth_manager = auth_manager
|
33 |
+
self.hf_api = HfApi()
|
34 |
+
self.queue = queue_module.Queue()
|
35 |
+
self.is_processing = False
|
36 |
+
self.worker_thread = None
|
37 |
+
self.model_tags = ["Merge", "Agent", "Reasoning", "Coding", "General", "Specialized", "Instruction", "Chat"]
|
38 |
+
self.current_evaluation = None
|
39 |
+
self.progress = 0
|
40 |
+
self.progress_lock = threading.Lock()
|
41 |
+
# Memory limit for models in GB (leave 2GB for system)
|
42 |
+
self.memory_limit_gb = 14.0
|
43 |
+
|
44 |
+
def start_worker(self):
|
45 |
+
"""Start the worker thread for processing the evaluation queue."""
|
46 |
+
if self.worker_thread is None or not self.worker_thread.is_alive():
|
47 |
+
self.is_processing = True
|
48 |
+
self.worker_thread = threading.Thread(target=self._process_queue)
|
49 |
+
self.worker_thread.daemon = True
|
50 |
+
self.worker_thread.start()
|
51 |
+
|
52 |
+
def stop_worker(self):
|
53 |
+
"""Stop the worker thread."""
|
54 |
+
self.is_processing = False
|
55 |
+
if self.worker_thread and self.worker_thread.is_alive():
|
56 |
+
self.worker_thread.join(timeout=1.0)
|
57 |
+
|
58 |
+
def check_model_size(self, model_id):
|
59 |
+
"""Check if a model will fit within RAM limitations.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
model_id: HuggingFace model ID
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
tuple: (will_fit, message)
|
66 |
+
"""
|
67 |
+
try:
|
68 |
+
# Query model info from the HuggingFace API
|
69 |
+
model_info_obj = self.hf_api.model_info(model_id)
|
70 |
+
|
71 |
+
# Check if model size information is available
|
72 |
+
if hasattr(model_info_obj, 'safetensors') and model_info_obj.safetensors:
|
73 |
+
# Calculate size in GB (divided by 1024^3)
|
74 |
+
total_size_gb = sum(
|
75 |
+
file.size for file in model_info_obj.safetensors.values()
|
76 |
+
) / (1024 * 1024 * 1024)
|
77 |
+
elif hasattr(model_info_obj, 'siblings'):
|
78 |
+
# Legacy method - calculate from file siblings
|
79 |
+
total_size_gb = sum(
|
80 |
+
sibling.size for sibling in model_info_obj.siblings
|
81 |
+
if sibling.rfilename.endswith(('.bin', '.safetensors', '.pt'))
|
82 |
+
) / (1024 * 1024 * 1024)
|
83 |
+
else:
|
84 |
+
# Can't determine size
|
85 |
+
return False, "Unable to determine model size. Please ensure model is under 14GB."
|
86 |
+
|
87 |
+
# Account for memory overhead (tokenizer, processing, etc.)
|
88 |
+
estimated_ram_needed = total_size_gb * 1.3 # 30% overhead
|
89 |
+
|
90 |
+
# Check against limit
|
91 |
+
if estimated_ram_needed > self.memory_limit_gb:
|
92 |
+
return False, f"Model is too large (approximately {total_size_gb:.1f}GB, needs {estimated_ram_needed:.1f}GB RAM). Maximum allowed is {self.memory_limit_gb}GB."
|
93 |
+
|
94 |
+
return True, f"Model size check passed ({total_size_gb:.1f}GB, estimated {estimated_ram_needed:.1f}GB RAM usage)"
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Model size check error: {e}")
|
98 |
+
# If we can't check, be cautious
|
99 |
+
return False, f"Error checking model size: {str(e)}. Please ensure your model is under {self.memory_limit_gb}GB."
|
100 |
+
|
101 |
+
def _process_queue(self):
|
102 |
+
"""Process the evaluation queue in a separate thread."""
|
103 |
+
while self.is_processing:
|
104 |
+
try:
|
105 |
+
# Get the next evaluation from the database
|
106 |
+
pending_evals = self.db_manager.get_evaluation_results(status="pending")
|
107 |
+
|
108 |
+
if pending_evals:
|
109 |
+
# Sort by priority and added_at
|
110 |
+
next_eval = pending_evals[0]
|
111 |
+
|
112 |
+
# Update status to running
|
113 |
+
self.db_manager.update_evaluation_status(next_eval['id'], 'running')
|
114 |
+
|
115 |
+
# Set current evaluation and reset progress
|
116 |
+
with self.progress_lock:
|
117 |
+
self.current_evaluation = next_eval
|
118 |
+
self.progress = 0
|
119 |
+
|
120 |
+
try:
|
121 |
+
# Get model and benchmark details
|
122 |
+
model_info = self.db_manager.get_model(next_eval['model_id'])
|
123 |
+
benchmark_info = self.db_manager.get_benchmark(next_eval['benchmark_id'])
|
124 |
+
|
125 |
+
if model_info and benchmark_info:
|
126 |
+
# Check if model will fit in memory
|
127 |
+
will_fit, message = self.check_model_size(model_info['hf_model_id'])
|
128 |
+
|
129 |
+
if not will_fit:
|
130 |
+
raise Exception(f"Model too large for evaluation: {message}")
|
131 |
+
|
132 |
+
# Run the evaluation
|
133 |
+
results = self._run_evaluation(
|
134 |
+
model_info['hf_model_id'],
|
135 |
+
benchmark_info['dataset_id']
|
136 |
+
)
|
137 |
+
|
138 |
+
# Calculate overall score
|
139 |
+
score = self._calculate_overall_score(results)
|
140 |
+
|
141 |
+
# Update status to completed with results
|
142 |
+
self.db_manager.update_evaluation_status(
|
143 |
+
next_eval['id'],
|
144 |
+
'completed',
|
145 |
+
results=results,
|
146 |
+
score=score
|
147 |
+
)
|
148 |
+
else:
|
149 |
+
raise Exception("Model or benchmark not found")
|
150 |
+
except Exception as e:
|
151 |
+
print(f"Evaluation error: {e}")
|
152 |
+
# Update status to failed with error message
|
153 |
+
error_results = {"error": str(e)}
|
154 |
+
self.db_manager.update_evaluation_status(
|
155 |
+
next_eval['id'],
|
156 |
+
'failed',
|
157 |
+
results=error_results
|
158 |
+
)
|
159 |
+
|
160 |
+
# Clear current evaluation
|
161 |
+
with self.progress_lock:
|
162 |
+
self.current_evaluation = None
|
163 |
+
self.progress = 0
|
164 |
+
else:
|
165 |
+
# No evaluations in queue, sleep for a bit
|
166 |
+
time.sleep(5)
|
167 |
+
except Exception as e:
|
168 |
+
print(f"Queue processing error: {e}")
|
169 |
+
time.sleep(5)
|
170 |
+
|
171 |
+
def _run_evaluation(self, model_id, dataset_id):
|
172 |
+
"""Run an evaluation for a model on a benchmark.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
model_id: HuggingFace model ID
|
176 |
+
dataset_id: HuggingFace dataset ID (with optional config)
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
dict: Evaluation results
|
180 |
+
"""
|
181 |
+
# Update progress
|
182 |
+
with self.progress_lock:
|
183 |
+
self.progress = 5 # Starting evaluation
|
184 |
+
|
185 |
+
# Parse dataset ID and config
|
186 |
+
if ":" in dataset_id:
|
187 |
+
dataset_id, config = dataset_id.split(":", 1)
|
188 |
+
else:
|
189 |
+
config = None
|
190 |
+
|
191 |
+
# Update progress
|
192 |
+
with self.progress_lock:
|
193 |
+
self.progress = 10 # Loading dataset
|
194 |
+
|
195 |
+
# Load the dataset
|
196 |
+
try:
|
197 |
+
if config:
|
198 |
+
dataset = load_dataset(dataset_id, config, split="test")
|
199 |
+
else:
|
200 |
+
dataset = load_dataset(dataset_id, split="test")
|
201 |
+
except Exception as e:
|
202 |
+
return {"error": f"Failed to load dataset: {str(e)}"}
|
203 |
+
|
204 |
+
# Update progress
|
205 |
+
with self.progress_lock:
|
206 |
+
self.progress = 20 # Loading model
|
207 |
+
|
208 |
+
try:
|
209 |
+
# Load the model with memory optimization settings
|
210 |
+
device = "cpu"
|
211 |
+
model = AutoModelForCausalLM.from_pretrained(
|
212 |
+
model_id,
|
213 |
+
device_map=device,
|
214 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
215 |
+
low_cpu_mem_usage=True, # Enable memory optimization
|
216 |
+
offload_folder="offload", # Enable offloading if needed
|
217 |
+
offload_state_dict=True, # Offload state dict for memory saving
|
218 |
+
max_memory={0: f"{self.memory_limit_gb}GB"} # Limit memory usage
|
219 |
+
)
|
220 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
221 |
+
except Exception as e:
|
222 |
+
print(f"Model loading error: {e}")
|
223 |
+
return {"error": f"Failed to load model: {str(e)}"}
|
224 |
+
|
225 |
+
# Update progress
|
226 |
+
with self.progress_lock:
|
227 |
+
self.progress = 30 # Determining task type
|
228 |
+
|
229 |
+
# Determine task type based on dataset features
|
230 |
+
task_type = self._determine_task_type(dataset)
|
231 |
+
|
232 |
+
# Update progress
|
233 |
+
with self.progress_lock:
|
234 |
+
self.progress = 40 # Starting evaluation
|
235 |
+
|
236 |
+
try:
|
237 |
+
# Run appropriate evaluation based on task type
|
238 |
+
if task_type == "text-generation":
|
239 |
+
results = self._evaluate_text_generation(model, tokenizer, dataset)
|
240 |
+
elif task_type == "question-answering":
|
241 |
+
results = self._evaluate_question_answering(model, tokenizer, dataset)
|
242 |
+
elif task_type == "classification":
|
243 |
+
results = self._evaluate_classification(model, tokenizer, dataset)
|
244 |
+
elif task_type == "code-generation":
|
245 |
+
results = self._evaluate_code_generation(model, tokenizer, dataset)
|
246 |
+
else:
|
247 |
+
# Default to general evaluation
|
248 |
+
results = self._evaluate_general(model, tokenizer, dataset)
|
249 |
+
except Exception as e:
|
250 |
+
print(f"Evaluation task error: {e}")
|
251 |
+
return {"error": f"Evaluation failed: {str(e)}"}
|
252 |
+
|
253 |
+
# Update progress
|
254 |
+
with self.progress_lock:
|
255 |
+
self.progress = 95 # Cleaning up
|
256 |
+
|
257 |
+
# Clean up to free memory
|
258 |
+
del model
|
259 |
+
del tokenizer
|
260 |
+
if torch.cuda.is_available():
|
261 |
+
torch.cuda.empty_cache()
|
262 |
+
|
263 |
+
# Update progress
|
264 |
+
with self.progress_lock:
|
265 |
+
self.progress = 100 # Completed
|
266 |
+
|
267 |
+
return results
|
268 |
+
|
269 |
+
def get_current_progress(self):
|
270 |
+
"""Get the current evaluation progress.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
tuple: (current_evaluation, progress_percentage)
|
274 |
+
"""
|
275 |
+
with self.progress_lock:
|
276 |
+
return self.current_evaluation, self.progress
|
277 |
+
|
278 |
+
def _determine_task_type(self, dataset):
|
279 |
+
"""Determine the task type based on dataset features.
|
280 |
+
|
281 |
+
Args:
|
282 |
+
dataset: HuggingFace dataset
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
str: Task type
|
286 |
+
"""
|
287 |
+
features = dataset.features
|
288 |
+
|
289 |
+
# Check for common feature patterns
|
290 |
+
if "question" in features and "answer" in features:
|
291 |
+
return "question-answering"
|
292 |
+
elif "code" in features or "solution" in features:
|
293 |
+
return "code-generation"
|
294 |
+
elif "label" in features or "class" in features:
|
295 |
+
return "classification"
|
296 |
+
elif "input" in features and "output" in features:
|
297 |
+
return "text-generation"
|
298 |
+
else:
|
299 |
+
return "general"
|
300 |
+
|
301 |
+
def _evaluate_text_generation(self, model, tokenizer, dataset):
|
302 |
+
"""Evaluate a model on text generation tasks.
|
303 |
+
|
304 |
+
Args:
|
305 |
+
model: HuggingFace model
|
306 |
+
tokenizer: HuggingFace tokenizer
|
307 |
+
dataset: HuggingFace dataset
|
308 |
+
|
309 |
+
Returns:
|
310 |
+
dict: Evaluation results
|
311 |
+
"""
|
312 |
+
# Set up generation pipeline
|
313 |
+
generator = pipeline(
|
314 |
+
"text-generation",
|
315 |
+
model=model,
|
316 |
+
tokenizer=tokenizer,
|
317 |
+
device="cpu"
|
318 |
+
)
|
319 |
+
|
320 |
+
# Sample a subset for evaluation (to keep runtime reasonable)
|
321 |
+
if len(dataset) > 100:
|
322 |
+
dataset = dataset.select(range(100))
|
323 |
+
|
324 |
+
# Track metrics
|
325 |
+
correct = 0
|
326 |
+
total = 0
|
327 |
+
generated_texts = []
|
328 |
+
|
329 |
+
# Process each example
|
330 |
+
for i, example in enumerate(dataset):
|
331 |
+
# Update progress based on completion percentage
|
332 |
+
with self.progress_lock:
|
333 |
+
self.progress = 40 + int((i / len(dataset)) * 50)
|
334 |
+
|
335 |
+
input_text = example.get("input", example.get("prompt", ""))
|
336 |
+
expected_output = example.get("output", example.get("target", ""))
|
337 |
+
|
338 |
+
if not input_text or not expected_output:
|
339 |
+
continue
|
340 |
+
|
341 |
+
# Generate text
|
342 |
+
generated = generator(
|
343 |
+
input_text,
|
344 |
+
max_length=100,
|
345 |
+
num_return_sequences=1
|
346 |
+
)
|
347 |
+
|
348 |
+
generated_text = generated[0]["generated_text"]
|
349 |
+
generated_texts.append(generated_text)
|
350 |
+
|
351 |
+
# Simple exact match check
|
352 |
+
if expected_output.strip() in generated_text:
|
353 |
+
correct += 1
|
354 |
+
|
355 |
+
total += 1
|
356 |
+
|
357 |
+
# Calculate metrics
|
358 |
+
accuracy = correct / total if total > 0 else 0
|
359 |
+
|
360 |
+
return {
|
361 |
+
"accuracy": accuracy,
|
362 |
+
"samples_evaluated": total,
|
363 |
+
"generated_samples": generated_texts[:5] # Include a few samples
|
364 |
+
}
|
365 |
+
|
366 |
+
def _evaluate_question_answering(self, model, tokenizer, dataset):
|
367 |
+
"""Evaluate a model on question answering tasks.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
model: HuggingFace model
|
371 |
+
tokenizer: HuggingFace tokenizer
|
372 |
+
dataset: HuggingFace dataset
|
373 |
+
|
374 |
+
Returns:
|
375 |
+
dict: Evaluation results
|
376 |
+
"""
|
377 |
+
# Set up QA pipeline
|
378 |
+
qa_pipeline = pipeline(
|
379 |
+
"question-answering",
|
380 |
+
model=model,
|
381 |
+
tokenizer=tokenizer,
|
382 |
+
device="cpu"
|
383 |
+
)
|
384 |
+
|
385 |
+
# Sample a subset for evaluation
|
386 |
+
if len(dataset) > 100:
|
387 |
+
dataset = dataset.select(range(100))
|
388 |
+
|
389 |
+
# Track metrics
|
390 |
+
exact_matches = 0
|
391 |
+
f1_scores = []
|
392 |
+
total = 0
|
393 |
+
|
394 |
+
# Process each example
|
395 |
+
for i, example in enumerate(dataset):
|
396 |
+
# Update progress based on completion percentage
|
397 |
+
with self.progress_lock:
|
398 |
+
self.progress = 40 + int((i / len(dataset)) * 50)
|
399 |
+
|
400 |
+
question = example.get("question", "")
|
401 |
+
context = example.get("context", "")
|
402 |
+
answer = example.get("answer", "")
|
403 |
+
|
404 |
+
if not question or not answer:
|
405 |
+
continue
|
406 |
+
|
407 |
+
# Get model prediction
|
408 |
+
if context:
|
409 |
+
result = qa_pipeline(question=question, context=context)
|
410 |
+
else:
|
411 |
+
# If no context provided, use the question as context
|
412 |
+
result = qa_pipeline(question=question, context=question)
|
413 |
+
|
414 |
+
predicted_answer = result["answer"]
|
415 |
+
|
416 |
+
# Calculate exact match
|
417 |
+
if predicted_answer.strip() == answer.strip():
|
418 |
+
exact_matches += 1
|
419 |
+
|
420 |
+
# Calculate F1 score
|
421 |
+
f1 = self._calculate_f1(answer, predicted_answer)
|
422 |
+
f1_scores.append(f1)
|
423 |
+
|
424 |
+
total += 1
|
425 |
+
|
426 |
+
# Calculate metrics
|
427 |
+
exact_match_accuracy = exact_matches / total if total > 0 else 0
|
428 |
+
avg_f1 = sum(f1_scores) / len(f1_scores) if f1_scores else 0
|
429 |
+
|
430 |
+
return {
|
431 |
+
"exact_match": exact_match_accuracy,
|
432 |
+
"f1": avg_f1,
|
433 |
+
"samples_evaluated": total
|
434 |
+
}
|
435 |
+
|
436 |
+
def _evaluate_classification(self, model, tokenizer, dataset):
|
437 |
+
"""Evaluate a model on classification tasks.
|
438 |
+
|
439 |
+
Args:
|
440 |
+
model: HuggingFace model
|
441 |
+
tokenizer: HuggingFace tokenizer
|
442 |
+
dataset: HuggingFace dataset
|
443 |
+
|
444 |
+
Returns:
|
445 |
+
dict: Evaluation results
|
446 |
+
"""
|
447 |
+
# Set up classification pipeline
|
448 |
+
classifier = pipeline(
|
449 |
+
"text-classification",
|
450 |
+
model=model,
|
451 |
+
tokenizer=tokenizer,
|
452 |
+
device="cpu"
|
453 |
+
)
|
454 |
+
|
455 |
+
# Sample a subset for evaluation
|
456 |
+
if len(dataset) > 100:
|
457 |
+
dataset = dataset.select(range(100))
|
458 |
+
|
459 |
+
# Track metrics
|
460 |
+
correct = 0
|
461 |
+
total = 0
|
462 |
+
|
463 |
+
# Process each example
|
464 |
+
for i, example in enumerate(dataset):
|
465 |
+
# Update progress based on completion percentage
|
466 |
+
with self.progress_lock:
|
467 |
+
self.progress = 40 + int((i / len(dataset)) * 50)
|
468 |
+
|
469 |
+
text = example.get("text", example.get("sentence", ""))
|
470 |
+
label = str(example.get("label", example.get("class", "")))
|
471 |
+
|
472 |
+
if not text or not label:
|
473 |
+
continue
|
474 |
+
|
475 |
+
# Get model prediction
|
476 |
+
result = classifier(text)
|
477 |
+
predicted_label = result[0]["label"]
|
478 |
+
|
479 |
+
# Check if correct
|
480 |
+
if str(predicted_label) == label:
|
481 |
+
correct += 1
|
482 |
+
|
483 |
+
total += 1
|
484 |
+
|
485 |
+
# Calculate metrics
|
486 |
+
accuracy = correct / total if total > 0 else 0
|
487 |
+
|
488 |
+
return {
|
489 |
+
"accuracy": accuracy,
|
490 |
+
"samples_evaluated": total
|
491 |
+
}
|
492 |
+
|
493 |
+
def _evaluate_code_generation(self, model, tokenizer, dataset):
|
494 |
+
"""Evaluate a model on code generation tasks.
|
495 |
+
|
496 |
+
Args:
|
497 |
+
model: HuggingFace model
|
498 |
+
tokenizer: HuggingFace tokenizer
|
499 |
+
dataset: HuggingFace dataset
|
500 |
+
|
501 |
+
Returns:
|
502 |
+
dict: Evaluation results
|
503 |
+
"""
|
504 |
+
# Set up generation pipeline
|
505 |
+
generator = pipeline(
|
506 |
+
"text-generation",
|
507 |
+
model=model,
|
508 |
+
tokenizer=tokenizer,
|
509 |
+
device="cpu"
|
510 |
+
)
|
511 |
+
|
512 |
+
# Sample a subset for evaluation
|
513 |
+
if len(dataset) > 50: # Smaller sample for code tasks
|
514 |
+
dataset = dataset.select(range(50))
|
515 |
+
|
516 |
+
# Track metrics
|
517 |
+
exact_matches = 0
|
518 |
+
functional_matches = 0
|
519 |
+
total = 0
|
520 |
+
|
521 |
+
# Process each example
|
522 |
+
for i, example in enumerate(dataset):
|
523 |
+
# Update progress based on completion percentage
|
524 |
+
with self.progress_lock:
|
525 |
+
self.progress = 40 + int((i / len(dataset)) * 50)
|
526 |
+
|
527 |
+
prompt = example.get("prompt", example.get("input", ""))
|
528 |
+
solution = example.get("solution", example.get("output", ""))
|
529 |
+
|
530 |
+
if not prompt or not solution:
|
531 |
+
continue
|
532 |
+
|
533 |
+
# Generate code
|
534 |
+
generated = generator(
|
535 |
+
prompt,
|
536 |
+
max_length=200,
|
537 |
+
num_return_sequences=1
|
538 |
+
)
|
539 |
+
|
540 |
+
generated_code = generated[0]["generated_text"]
|
541 |
+
|
542 |
+
# Extract code from generated text (remove prompt)
|
543 |
+
if prompt in generated_code:
|
544 |
+
generated_code = generated_code[len(prompt):].strip()
|
545 |
+
|
546 |
+
# Check exact match
|
547 |
+
if generated_code.strip() == solution.strip():
|
548 |
+
exact_matches += 1
|
549 |
+
functional_matches += 1
|
550 |
+
else:
|
551 |
+
# We would ideally check functional correctness here
|
552 |
+
# but that requires executing code which is complex and potentially unsafe
|
553 |
+
# For now, we'll use a simple heuristic
|
554 |
+
if len(generated_code) > 0 and any(keyword in generated_code for keyword in ["def ", "function", "return", "class"]):
|
555 |
+
functional_matches += 0.5 # Partial credit
|
556 |
+
|
557 |
+
total += 1
|
558 |
+
|
559 |
+
# Calculate metrics
|
560 |
+
exact_match_rate = exact_matches / total if total > 0 else 0
|
561 |
+
functional_correctness = functional_matches / total if total > 0 else 0
|
562 |
+
|
563 |
+
return {
|
564 |
+
"exact_match": exact_match_rate,
|
565 |
+
"functional_correctness": functional_correctness,
|
566 |
+
"samples_evaluated": total
|
567 |
+
}
|
568 |
+
|
569 |
+
def _evaluate_general(self, model, tokenizer, dataset):
|
570 |
+
"""General evaluation for any dataset type.
|
571 |
+
|
572 |
+
Args:
|
573 |
+
model: HuggingFace model
|
574 |
+
tokenizer: HuggingFace tokenizer
|
575 |
+
dataset: HuggingFace dataset
|
576 |
+
|
577 |
+
Returns:
|
578 |
+
dict: Evaluation results
|
579 |
+
"""
|
580 |
+
# Set up generation pipeline
|
581 |
+
generator = pipeline(
|
582 |
+
"text-generation",
|
583 |
+
model=model,
|
584 |
+
tokenizer=tokenizer,
|
585 |
+
device="cpu"
|
586 |
+
)
|
587 |
+
|
588 |
+
# Sample a subset for evaluation
|
589 |
+
if len(dataset) > 50:
|
590 |
+
dataset = dataset.select(range(50))
|
591 |
+
|
592 |
+
# Find input and output fields
|
593 |
+
features = dataset.features
|
594 |
+
input_field = None
|
595 |
+
output_field = None
|
596 |
+
|
597 |
+
for field in features:
|
598 |
+
if field.lower() in ["input", "prompt", "question", "text"]:
|
599 |
+
input_field = field
|
600 |
+
elif field.lower() in ["output", "target", "answer", "response"]:
|
601 |
+
output_field = field
|
602 |
+
|
603 |
+
if not input_field:
|
604 |
+
# Just use the first string field as input
|
605 |
+
for field in features:
|
606 |
+
if isinstance(features[field], (str, list)):
|
607 |
+
input_field = field
|
608 |
+
break
|
609 |
+
|
610 |
+
# Track metrics
|
611 |
+
total = 0
|
612 |
+
generated_texts = []
|
613 |
+
|
614 |
+
# Process each example
|
615 |
+
for i, example in enumerate(dataset):
|
616 |
+
# Update progress based on completion percentage
|
617 |
+
with self.progress_lock:
|
618 |
+
self.progress = 40 + int((i / len(dataset)) * 50)
|
619 |
+
|
620 |
+
if input_field and input_field in example:
|
621 |
+
input_text = str(example[input_field])
|
622 |
+
|
623 |
+
# Generate text
|
624 |
+
generated = generator(
|
625 |
+
input_text,
|
626 |
+
max_length=100,
|
627 |
+
num_return_sequences=1
|
628 |
+
)
|
629 |
+
|
630 |
+
generated_text = generated[0]["generated_text"]
|
631 |
+
generated_texts.append({
|
632 |
+
"input": input_text,
|
633 |
+
"output": generated_text,
|
634 |
+
"expected": str(example[output_field]) if output_field and output_field in example else "N/A"
|
635 |
+
})
|
636 |
+
|
637 |
+
total += 1
|
638 |
+
|
639 |
+
return {
|
640 |
+
"samples_evaluated": total,
|
641 |
+
"generated_samples": generated_texts[:5] # Include a few samples
|
642 |
+
}
|
643 |
+
|
644 |
+
def _calculate_f1(self, answer, prediction):
|
645 |
+
"""Calculate F1 score between answer and prediction.
|
646 |
+
|
647 |
+
Args:
|
648 |
+
answer: Ground truth answer
|
649 |
+
prediction: Model prediction
|
650 |
+
|
651 |
+
Returns:
|
652 |
+
float: F1 score
|
653 |
+
"""
|
654 |
+
# Tokenize
|
655 |
+
answer_tokens = answer.lower().split()
|
656 |
+
prediction_tokens = prediction.lower().split()
|
657 |
+
|
658 |
+
# Calculate precision and recall
|
659 |
+
common_tokens = set(answer_tokens) & set(prediction_tokens)
|
660 |
+
|
661 |
+
if not common_tokens:
|
662 |
+
return 0.0
|
663 |
+
|
664 |
+
precision = len(common_tokens) / len(prediction_tokens)
|
665 |
+
recall = len(common_tokens) / len(answer_tokens)
|
666 |
+
|
667 |
+
# Calculate F1
|
668 |
+
if precision + recall == 0:
|
669 |
+
return 0.0
|
670 |
+
|
671 |
+
f1 = 2 * precision * recall / (precision + recall)
|
672 |
+
return f1
|
673 |
+
|
674 |
+
def _calculate_overall_score(self, results):
|
675 |
+
"""Calculate an overall score from evaluation results.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
results: Evaluation results dictionary
|
679 |
+
|
680 |
+
Returns:
|
681 |
+
float: Overall score between 0 and 100
|
682 |
+
"""
|
683 |
+
# If there was an error, return a low score
|
684 |
+
if "error" in results:
|
685 |
+
return 0.0
|
686 |
+
|
687 |
+
score = 0.0
|
688 |
+
|
689 |
+
# Check for common metrics and weight them
|
690 |
+
if "accuracy" in results:
|
691 |
+
score += results["accuracy"] * 100
|
692 |
+
|
693 |
+
if "exact_match" in results:
|
694 |
+
score += results["exact_match"] * 100
|
695 |
+
|
696 |
+
if "f1" in results:
|
697 |
+
score += results["f1"] * 100
|
698 |
+
|
699 |
+
if "functional_correctness" in results:
|
700 |
+
score += results["functional_correctness"] * 100
|
701 |
+
|
702 |
+
# If multiple metrics were found, average them
|
703 |
+
num_metrics = sum(1 for metric in ["accuracy", "exact_match", "f1", "functional_correctness"] if metric in results)
|
704 |
+
|
705 |
+
if num_metrics > 0:
|
706 |
+
score /= num_metrics
|
707 |
+
else:
|
708 |
+
# Default score if no metrics available
|
709 |
+
score = 50.0
|
710 |
+
|
711 |
+
return score
|
712 |
+
|
713 |
+
def submit_evaluation(self, model_id, benchmark_id, user_id, priority=0):
|
714 |
+
"""Submit a model for evaluation on a benchmark.
|
715 |
+
|
716 |
+
Args:
|
717 |
+
model_id: Model ID in the database
|
718 |
+
benchmark_id: Benchmark ID in the database
|
719 |
+
user_id: User ID submitting the evaluation
|
720 |
+
priority: Queue priority (higher = higher priority)
|
721 |
+
|
722 |
+
Returns:
|
723 |
+
tuple: (evaluation_id, message)
|
724 |
+
"""
|
725 |
+
# Check if user can submit today
|
726 |
+
if not self.auth_manager.can_submit_benchmark(user_id):
|
727 |
+
return None, "Daily submission limit reached. Try again tomorrow."
|
728 |
+
|
729 |
+
try:
|
730 |
+
# Get model HuggingFace ID to check size
|
731 |
+
model_info = self.db_manager.get_model(model_id)
|
732 |
+
if not model_info:
|
733 |
+
return None, "Model not found in database."
|
734 |
+
|
735 |
+
# Check if model will fit in memory
|
736 |
+
will_fit, message = self.check_model_size(model_info['hf_model_id'])
|
737 |
+
|
738 |
+
if not will_fit:
|
739 |
+
return None, message
|
740 |
+
|
741 |
+
# Add evaluation to database and queue
|
742 |
+
evaluation_id = self.db_manager.add_evaluation(
|
743 |
+
model_id=model_id,
|
744 |
+
benchmark_id=benchmark_id,
|
745 |
+
priority=priority
|
746 |
+
)
|
747 |
+
|
748 |
+
# Update user's last submission date
|
749 |
+
self.auth_manager.update_submission_date(user_id)
|
750 |
+
|
751 |
+
# Make sure worker is running
|
752 |
+
self.start_worker()
|
753 |
+
|
754 |
+
return evaluation_id, f"Evaluation submitted successfully. {message}"
|
755 |
+
except Exception as e:
|
756 |
+
print(f"Submit evaluation error: {e}")
|
757 |
+
return None, f"Failed to submit evaluation: {str(e)}"
|
758 |
+
|
759 |
+
def get_queue_status(self):
|
760 |
+
"""Get the current status of the evaluation queue.
|
761 |
+
|
762 |
+
Returns:
|
763 |
+
dict: Queue status information
|
764 |
+
"""
|
765 |
+
try:
|
766 |
+
# Get evaluations from database
|
767 |
+
pending_evals = self.db_manager.get_evaluation_results(status="pending")
|
768 |
+
running_evals = self.db_manager.get_evaluation_results(status="running")
|
769 |
+
completed_evals = self.db_manager.get_evaluation_results(status="completed")
|
770 |
+
failed_evals = self.db_manager.get_evaluation_results(status="failed")
|
771 |
+
|
772 |
+
# Get current evaluation progress
|
773 |
+
current_eval, progress = self.get_current_progress()
|
774 |
+
|
775 |
+
return {
|
776 |
+
"pending": len(pending_evals),
|
777 |
+
"running": len(running_evals),
|
778 |
+
"completed": len(completed_evals),
|
779 |
+
"failed": len(failed_evals),
|
780 |
+
"is_processing": self.is_processing,
|
781 |
+
"current_evaluation": current_eval,
|
782 |
+
"progress": progress,
|
783 |
+
"memory_limit_gb": self.memory_limit_gb
|
784 |
+
}
|
785 |
+
except Exception as e:
|
786 |
+
print(f"Queue status error: {e}")
|
787 |
+
return {
|
788 |
+
"pending": 0,
|
789 |
+
"running": 0,
|
790 |
+
"completed": 0,
|
791 |
+
"failed": 0,
|
792 |
+
"is_processing": self.is_processing,
|
793 |
+
"current_evaluation": None,
|
794 |
+
"progress": 0,
|
795 |
+
"memory_limit_gb": self.memory_limit_gb,
|
796 |
+
"error": str(e)
|
797 |
+
}
|
798 |
+
|
799 |
+
# Model submission UI components
|
800 |
def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
801 |
"""Create the model submission UI components.
|
802 |
|
|
|
901 |
|
902 |
def refresh_benchmarks_handler():
|
903 |
benchmarks = db_manager.get_benchmarks()
|
904 |
+
|
905 |
# Format for dropdown - properly formatted to display names
|
906 |
choices = []
|
907 |
for b in benchmarks:
|