File size: 12,794 Bytes
9a46619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc68d6
9a46619
 
 
 
 
 
acc68d6
ef7a5e8
 
9a46619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc68d6
9a46619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc68d6
 
 
 
 
 
 
 
 
 
 
 
 
9a46619
 
 
 
 
 
 
 
 
acc68d6
 
 
9a46619
 
 
 
acc68d6
 
 
 
 
 
 
 
 
 
 
 
 
9a46619
 
 
 
 
 
acc68d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46619
 
 
 
 
 
 
acc68d6
9a46619
 
 
acc68d6
9a46619
 
 
 
 
 
 
 
acc68d6
 
 
 
 
 
 
 
 
 
 
 
 
 
9a46619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc68d6
9a46619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc68d6
 
 
9a46619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acc68d6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""
Main application for Dynamic Highscores system.

This file integrates all components into a unified application.
"""

import os
import gradio as gr
import threading
import time
from database_schema import DynamicHighscoresDB
from auth import HuggingFaceAuth
from benchmark_selection import BenchmarkSelector, create_benchmark_selection_ui
from evaluation_queue import EvaluationQueue, create_model_submission_ui
from leaderboard import Leaderboard, create_leaderboard_ui
from model_config import ModelConfigManager, create_community_framework_ui
from sample_benchmarks import add_sample_benchmarks

# Initialize components in main thread
db = DynamicHighscoresDB()
auth_manager = HuggingFaceAuth(db)
benchmark_selector = BenchmarkSelector(db, auth_manager)
model_config_manager = ModelConfigManager(db)
evaluation_queue = EvaluationQueue(db, auth_manager, model_config_manager)
leaderboard = Leaderboard(db)

# Initialize sample benchmarks if none exist
print("Checking for existing benchmarks...")
benchmarks = db.get_benchmarks()
if not benchmarks or len(benchmarks) == 0:
    print("No benchmarks found. Adding sample benchmarks...")
    try:
        # Make sure the database path is clear
        print(f"Database path: {db.db_path}")
        
        # Import and call the function directly 
        num_added = add_sample_benchmarks()
        print(f"Added {num_added} sample benchmarks.")
    except Exception as e:
        print(f"Error adding sample benchmarks: {str(e)}")
        # Try direct DB insertion as fallback
        try:
            print("Attempting direct benchmark insertion...")
            db.add_benchmark(
                name="MMLU (Massive Multitask Language Understanding)",
                dataset_id="cais/mmlu",
                description="Tests knowledge across 57 subjects"
            )
            print("Added fallback benchmark.")
        except Exception as inner_e:
            print(f"Fallback insertion failed: {str(inner_e)}")
else:
    print(f"Found {len(benchmarks)} existing benchmarks.")

# Custom CSS with theme awareness
css = """
/* Theme-adaptive colored info box */
.info-text {
    background-color: rgba(53, 130, 220, 0.1);
    padding: 12px;
    border-radius: 8px;
    border-left: 4px solid #3498db;
    margin: 12px 0;
}

/* High-contrast text for elements - works in light and dark themes */
.info-text, .header, .footer, .tab-content, 
button, input, textarea, select, option, 
.gradio-container *, .markdown-text {
    color: var(--text-color, inherit) !important;
}

/* Container styling */
.container {
    max-width: 1200px;
    margin: 0 auto;
}

/* Header styling */
.header {
    text-align: center;
    margin-bottom: 20px;
    font-weight: bold;
    font-size: 24px;
}

/* Footer styling */
.footer {
    text-align: center;
    margin-top: 40px;
    padding: 20px;
    border-top: 1px solid var(--border-color-primary, #eee);
}

/* Login section styling */
.login-section {
    padding: 10px;
    margin-bottom: 15px;
    border-radius: 8px;
    background-color: rgba(250, 250, 250, 0.1);
    text-align: center;
}

/* Login button styling */
.login-button {
    background-color: #4CAF50 !important;
    color: white !important;
    font-weight: bold;
}

/* Force high contrast on specific input areas */
input[type="text"], input[type="password"], textarea {
    background-color: var(--background-fill-primary) !important;
    color: var(--body-text-color) !important;
}

/* Force text visibility in multiple contexts */
.gradio-markdown p, .gradio-markdown h1, .gradio-markdown h2, 
.gradio-markdown h3, .gradio-markdown h4, .gradio-markdown li {
    color: var(--body-text-color) !important;
}

/* Fix dark mode text visibility */
@media (prefers-color-scheme: dark) {
    input, textarea, select {
        color: #ffffff !important;
    }
    
    ::placeholder {
        color: rgba(255, 255, 255, 0.5) !important;
    }
}
"""

# JavaScript login implementation
def js_login_script():
    space_host = os.environ.get("SPACE_HOST", "localhost:7860")
    redirect_uri = f"https://{space_host}"
    client_id = os.environ.get("OAUTH_CLIENT_ID", "")
    
    return f"""
    <script src="https://unpkg.com/@huggingface/[email protected]/dist/index.umd.min.js"></script>
    <script>
    (async function() {{
        const HfHub = window.HfHub;
        try {{
            // Check if we're returning from OAuth redirect
            const oauthResult = await HfHub.oauthHandleRedirectIfPresent();
            
            if (oauthResult) {{
                console.log("User logged in:", oauthResult);
                
                // Store the user info in localStorage
                localStorage.setItem("hf_user", JSON.stringify(oauthResult.userInfo));
                localStorage.setItem("hf_token", oauthResult.accessToken);
                
                // Update the UI to show logged in state
                document.getElementById("login-status").textContent = "Logged in as: " + oauthResult.userInfo.name;
                document.getElementById("login-button").style.display = "none";
                
                // Add token to headers for future requests
                const originalFetch = window.fetch;
                window.fetch = function(url, options = {{}}) {{
                    if (!options.headers) {{
                        options.headers = {{}};
                    }}
                    
                    // Add the token to the headers
                    options.headers["HF-Token"] = oauthResult.accessToken;
                    
                    return originalFetch(url, options);
                }};
                
                // Refresh the page to update server-side state
                setTimeout(() => window.location.reload(), 1000);
            }}
        }} catch (error) {{
            console.error("OAuth error:", error);
        }}
        
        // Check if user is already logged in from localStorage
        const storedUser = localStorage.getItem("hf_user");
        const storedToken = localStorage.getItem("hf_token");
        
        if (storedUser && storedToken) {{
            try {{
                const userInfo = JSON.parse(storedUser);
                document.getElementById("login-status").textContent = "Logged in as: " + userInfo.name;
                document.getElementById("login-button").style.display = "none";
                
                // Add token to headers for future requests
                const originalFetch = window.fetch;
                window.fetch = function(url, options = {{}}) {{
                    if (!options.headers) {{
                        options.headers = {{}};
                    }}
                    
                    // Add the token to the headers
                    options.headers["HF-Token"] = storedToken;
                    
                    return originalFetch(url, options);
                }};
            }} catch (e) {{
                console.error("Error parsing stored user:", e);
            }}
        }}
        
        // Setup login button
        const loginButton = document.getElementById("login-button");
        if (loginButton) {{
            loginButton.addEventListener("click", async function() {{
                try {{
                    const clientId = "{client_id}";
                    if (clientId) {{
                        // Use HuggingFace OAuth
                        const loginUrl = await HfHub.oauthLoginUrl({{
                            clientId: clientId,
                            redirectUrl: "{redirect_uri}",
                            scopes: ["openid", "profile"]
                        }});
                        console.log("Redirecting to:", loginUrl);
                        window.location.href = loginUrl;
                    }} else {{
                        // Fallback to token-based login
                        const token = prompt("Enter your HuggingFace token:");
                        if (token) {{
                            // Set the token as a cookie
                            document.cookie = "hf_token=" + token + "; path=/; SameSite=Strict";
                            // Reload the page to apply the token
                            window.location.reload();
                        }}
                    }}
                }} catch (error) {{
                    console.error("Error starting login process:", error);
                    alert("Error starting login process. Please try again.");
                }}
            }});
        }}
    }})();
    </script>
    """

# Simple manual authentication check
def check_user(request: gr.Request):
    if request:
        # Check for HF-User header from Space OAuth
        username = request.headers.get("HF-User")
        if username:
            # User is logged in via HF Spaces
            print(f"User logged in via HF-User header: {username}")
            user = db.get_user_by_username(username)
            if not user:
                # Create user if they don't exist
                print(f"Creating new user: {username}")
                is_admin = (username == "Quazim0t0")
                db.add_user(username, username, is_admin)
                user = db.get_user_by_username(username)
            return username
        
        # Check for token in headers (from our custom JS)
        token = request.headers.get("HF-Token")
        if token:
            try:
                # Validate token with HuggingFace
                user_info = auth_manager.hf_api.whoami(token=token)
                if user_info:
                    username = user_info.get("name", "")
                    print(f"User logged in via token: {username}")
                    return username
            except Exception as e:
                print(f"Token validation error: {e}")
    
    return None

# Start evaluation queue worker
def start_queue_worker():
    # Wait a moment to ensure app is initialized
    time.sleep(2)
    try:
        print("Starting evaluation queue worker...")
        evaluation_queue.start_worker()
    except Exception as e:
        print(f"Error starting queue worker: {e}")

# Create Gradio app
with gr.Blocks(css=css, title="Dynamic Highscores") as app:
    # State to track user
    user_state = gr.State(None)
    
    # Login section
    with gr.Row(elem_classes=["login-section"]):
        with gr.Column():
            gr.HTML("""
            <div style="display: flex; justify-content: space-between; align-items: center;">
                <div id="login-status">Not logged in</div>
                <button id="login-button" style="padding: 8px 16px; background-color: #4CAF50; color: white; border: none; border-radius: 4px; cursor: pointer;">Login with HuggingFace</button>
            </div>
            """)
    
    # Add the JS login script
    gr.HTML(js_login_script())
    
    gr.Markdown("# πŸ† Dynamic Highscores", elem_classes=["header"])
    gr.Markdown("""
    Welcome to Dynamic Highscores - a community benchmark platform for evaluating and comparing language models.
    
    - **Add your own benchmarks** from HuggingFace datasets
    - **Submit your models** for CPU-only evaluation
    - **Compare performance** across different models and benchmarks
    - **Filter results** by model type (Merge, Agent, Reasoning, Coding, etc.)
    """, elem_classes=["info-text"])
    
    # Main tabs
    with gr.Tabs() as tabs:
        with gr.TabItem("πŸ“Š Leaderboard", id=0):
            leaderboard_ui = create_leaderboard_ui(leaderboard, db)
        
        with gr.TabItem("πŸš€ Submit Model", id=1):
            submission_ui = create_model_submission_ui(evaluation_queue, auth_manager, db)
        
        with gr.TabItem("πŸ” Benchmarks", id=2):
            benchmark_ui = create_benchmark_selection_ui(benchmark_selector, auth_manager)
        
        with gr.TabItem("🌐 Community Framework", id=3):
            community_ui = create_community_framework_ui(model_config_manager)
    
    gr.Markdown("""
    ### About Dynamic Highscores
    
    This platform allows users to select benchmarks from HuggingFace datasets and evaluate models against them.
    Each user can submit one benchmark per day (admin users are exempt from this limit).
    All evaluations run on CPU only to ensure fair comparisons.
    
    Created by Quazim0t0
    """, elem_classes=["footer"])
    
    # Check login on page load
    app.load(
        fn=check_user,
        inputs=[],
        outputs=[user_state]
    )

# Launch the app
if __name__ == "__main__":
    # Start queue worker in a separate thread
    queue_thread = threading.Thread(target=start_queue_worker)
    queue_thread.daemon = True
    queue_thread.start()
    
    # Launch the app
    app.launch()