File size: 35,138 Bytes
9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 acc68d6 9a46619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 |
"""
Model configuration system for Dynamic Highscores.
This module provides a modular system for model configurations.
"""
import os
import json
import gradio as gr
from huggingface_hub import HfApi
class ModelConfigManager:
"""Manages model configurations for evaluation."""
def __init__(self, db_manager):
"""Initialize the model configuration manager.
Args:
db_manager: Database manager instance
"""
self.db_manager = db_manager
self.config_dir = "model_configs"
# Ensure config directory exists
os.makedirs(self.config_dir, exist_ok=True)
# Default configurations for popular models
self.default_configs = {
"gemma": {
"name": "Gemma",
"description": "Configuration for Gemma models",
"parameters": {
"temperature": 1.0,
"top_k": 64,
"min_p": 0.01,
"top_p": 0.95,
"repetition_penalty": 1.0
}
},
"llama": {
"name": "LLaMA",
"description": "Configuration for LLaMA models",
"parameters": {
"temperature": 0.8,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.1
}
},
"mistral": {
"name": "Mistral",
"description": "Configuration for Mistral models",
"parameters": {
"temperature": 0.7,
"top_k": 50,
"top_p": 0.9,
"repetition_penalty": 1.1
}
},
"phi": {
"name": "Phi",
"description": "Configuration for Phi models",
"parameters": {
"temperature": 0.7,
"top_k": 40,
"top_p": 0.9,
"repetition_penalty": 1.05
}
},
"gpt": {
"name": "GPT",
"description": "Configuration for GPT models",
"parameters": {
"temperature": 0.9,
"top_k": 0,
"top_p": 0.9,
"repetition_penalty": 1.0
}
}
}
# Initialize default configs if they don't exist
self._initialize_default_configs()
def _initialize_default_configs(self):
"""Initialize default configurations if they don't exist."""
for model_type, config in self.default_configs.items():
config_path = os.path.join(self.config_dir, f"{model_type}.json")
if not os.path.exists(config_path):
with open(config_path, "w") as f:
json.dump(config, f, indent=2)
def get_available_configs(self):
"""Get all available model configurations.
Returns:
list: List of configuration information dictionaries
"""
configs = []
# Read all JSON files in the config directory
if os.path.exists(self.config_dir):
for filename in os.listdir(self.config_dir):
if filename.endswith(".json"):
config_path = os.path.join(self.config_dir, filename)
try:
with open(config_path, "r") as f:
config = json.load(f)
# Add filename (without extension) as ID
config_id = os.path.splitext(filename)[0]
config["id"] = config_id
configs.append(config)
except Exception as e:
print(f"Error loading config {filename}: {e}")
return configs
def get_config(self, config_id):
"""Get a specific model configuration.
Args:
config_id: Configuration ID (filename without extension)
Returns:
dict: Configuration information or None if not found
"""
config_path = os.path.join(self.config_dir, f"{config_id}.json")
if os.path.exists(config_path):
try:
with open(config_path, "r") as f:
config = json.load(f)
# Add ID to config
config["id"] = config_id
return config
except Exception as e:
print(f"Error loading config {config_id}: {e}")
return None
def add_config(self, name, description, parameters):
"""Add a new model configuration.
Args:
name: Configuration name
description: Configuration description
parameters: Dictionary of configuration parameters
Returns:
str: Configuration ID if successful, None otherwise
"""
try:
# Create a sanitized ID from the name
config_id = name.lower().replace(" ", "_").replace("-", "_")
# Create config object
config = {
"name": name,
"description": description,
"parameters": parameters
}
# Save to file
config_path = os.path.join(self.config_dir, f"{config_id}.json")
with open(config_path, "w") as f:
json.dump(config, f, indent=2)
return config_id
except Exception as e:
print(f"Error adding config: {e}")
return None
def update_config(self, config_id, name=None, description=None, parameters=None):
"""Update an existing model configuration.
Args:
config_id: Configuration ID to update
name: New configuration name (optional)
description: New configuration description (optional)
parameters: New configuration parameters (optional)
Returns:
bool: True if successful, False otherwise
"""
try:
# Get existing config
config = self.get_config(config_id)
if not config:
return False
# Update fields if provided
if name:
config["name"] = name
if description:
config["description"] = description
if parameters:
config["parameters"] = parameters
# Remove ID field before saving
if "id" in config:
del config["id"]
# Save to file
config_path = os.path.join(self.config_dir, f"{config_id}.json")
with open(config_path, "w") as f:
json.dump(config, f, indent=2)
return True
except Exception as e:
print(f"Error updating config: {e}")
return False
def delete_config(self, config_id):
"""Delete a model configuration.
Args:
config_id: Configuration ID to delete
Returns:
bool: True if successful, False otherwise
"""
try:
# Check if this is a default config
if config_id in self.default_configs:
print(f"Cannot delete default config: {config_id}")
return False
# Delete file
config_path = os.path.join(self.config_dir, f"{config_id}.json")
if os.path.exists(config_path):
os.remove(config_path)
return True
return False
except Exception as e:
print(f"Error deleting config: {e}")
return False
def apply_config_to_model_params(self, model_params, config_id):
"""Apply a configuration to model parameters.
Args:
model_params: Dictionary of model parameters to update
config_id: Configuration ID to apply
Returns:
dict: Updated model parameters
"""
config = self.get_config(config_id)
if not config or "parameters" not in config:
return model_params
# Apply configuration parameters
for param, value in config["parameters"].items():
model_params[param] = value
return model_params
def create_community_framework_ui(model_config_manager):
"""Create the community framework UI components.
Args:
model_config_manager: Model configuration manager instance
Returns:
gr.Blocks: Gradio Blocks component with community framework UI
"""
with gr.Blocks() as community_ui:
gr.Markdown("# 🌐 Dynamic Highscores Community Framework")
with gr.Tabs() as tabs:
with gr.TabItem("About the Framework", id=0):
gr.Markdown("""
## About Dynamic Highscores
Dynamic Highscores is an open-source community benchmark system for evaluating language models on any dataset. This project was created to fill the gap left by the retirement of HuggingFace's "Open LLM Leaderboards" which were discontinued due to outdated benchmarks.
### Key Features
- **Flexible Benchmarking**: Test models against any HuggingFace dataset, not just predefined benchmarks
- **Community-Driven**: Anyone can add new benchmarks and submit models for evaluation
- **Modern Evaluation**: Focus on contemporary benchmarks that better reflect current model capabilities
- **CPU-Only Evaluation**: Ensures fair comparisons across different models
- **Daily Submission Limits**: Prevents system abuse (one benchmark per day per user)
- **Model Tagging**: Categorize models as Merge, Agent, Reasoning, Coding, etc.
- **Unified Leaderboard**: View all models with filtering capabilities by tags
### Why This Project Matters
When HuggingFace retired their "Open LLM Leaderboards," the community lost a valuable resource for comparing model performance. The benchmarks used had become outdated and didn't reflect the rapid advances in language model capabilities.
Dynamic Highscores addresses this issue by allowing users to select from any benchmark on HuggingFace, including the most recent and relevant datasets. This ensures that models are evaluated on tasks that matter for current applications.
## How It Works
1. **Add Benchmarks**: Users can add any dataset from HuggingFace as a benchmark
2. **Submit Models**: Submit your HuggingFace model for evaluation against selected benchmarks
3. **View Results**: All results appear on the leaderboard, filterable by model type and benchmark
4. **Compare Performance**: See how different models perform across various tasks
## Project Structure
The codebase is organized into several key components:
- **app.py**: Main application integrating all components
- **auth.py**: Authentication system for HuggingFace login
- **benchmark_selection.py**: UI and logic for selecting and adding benchmarks
- **database_schema.py**: SQLite database schema for storing benchmarks, models, and results
- **evaluation_queue.py**: Queue system for processing model evaluations
- **leaderboard.py**: Unified leaderboard with filtering capabilities
- **sample_benchmarks.py**: Initial benchmark examples
- **model_config.py**: Modular system for model configurations
## Getting Started
To use Dynamic Highscores:
1. Log in with your HuggingFace account
2. Browse available benchmarks or add your own
3. Submit your model for evaluation
4. View results on the leaderboard
## Contributing to the Project
We welcome contributions from the community! If you'd like to improve Dynamic Highscores, here are some ways to get involved:
- **Add New Features**: Enhance the platform with additional functionality
- **Improve Evaluation Methods**: Help make model evaluations more accurate and efficient
- **Fix Bugs**: Address issues in the codebase
- **Enhance Documentation**: Make the project more accessible to new users
- **Add Model Configurations**: Contribute optimal configurations for different model types
To contribute, fork the repository, make your changes, and submit a pull request. We appreciate all contributions, big or small!
""")
with gr.TabItem("Model Configurations", id=1):
gr.Markdown("""
## Model Configuration System
The model configuration system allows users to create and apply predefined configurations for different model types. This ensures consistent evaluation settings and helps achieve optimal performance for each model architecture.
### What Are Model Configurations?
Model configurations define parameters such as:
- **Temperature**: Controls randomness in generation
- **Top-K**: Limits token selection to top K most likely tokens
- **Top-P (nucleus sampling)**: Selects from tokens comprising the top P probability mass
- **Min-P**: Sets a minimum probability threshold for token selection
- **Repetition Penalty**: Discourages repetitive text
Different model architectures perform best with different parameter settings. For example, Gemma models typically work well with:
```
Temperature: 1.0
Top_K: 64
Min_P: 0.01
Top_P: 0.95
Repetition Penalty: 1.0
```
### Using Model Configurations
When submitting a model for evaluation, you can select a predefined configuration or create a custom one. The system will apply these parameters during the evaluation process.
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Available Configurations")
config_list = gr.Dataframe(
headers=["Name", "Description"],
label="Available Configurations",
interactive=True
)
refresh_configs_button = gr.Button("Refresh Configurations")
with gr.Column():
selected_config = gr.JSON(label="Configuration Details")
with gr.Accordion("Add New Configuration", open=False):
with gr.Row():
with gr.Column():
config_name = gr.Textbox(
placeholder="Enter a name for this configuration",
label="Configuration Name"
)
config_description = gr.Textbox(
placeholder="Enter a description for this configuration",
label="Description",
lines=2
)
with gr.Column():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_k = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="Top-K"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.9,
step=0.01,
label="Top-P"
)
min_p = gr.Slider(
minimum=0.0,
maximum=0.5,
value=0.01,
step=0.01,
label="Min-P"
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.05,
label="Repetition Penalty"
)
add_config_button = gr.Button("Add Configuration")
add_config_status = gr.Markdown("")
with gr.Accordion("Edit Configuration", open=False):
with gr.Row():
with gr.Column():
edit_config_id = gr.Dropdown(
choices=[],
label="Select Configuration to Edit"
)
edit_config_name = gr.Textbox(
label="Configuration Name"
)
edit_config_description = gr.Textbox(
label="Description",
lines=2
)
with gr.Column():
edit_temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
label="Temperature"
)
edit_top_k = gr.Slider(
minimum=0,
maximum=100,
step=1,
label="Top-K"
)
edit_top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.01,
label="Top-P"
)
edit_min_p = gr.Slider(
minimum=0.0,
maximum=0.5,
step=0.01,
label="Min-P"
)
edit_repetition_penalty = gr.Slider(
minimum=1.0,
maximum=2.0,
step=0.05,
label="Repetition Penalty"
)
with gr.Row():
update_config_button = gr.Button("Update Configuration")
delete_config_button = gr.Button("Delete Configuration", variant="stop")
edit_config_status = gr.Markdown("")
with gr.TabItem("Setup Guide", id=2):
gr.Markdown("""
## Setting Up Dynamic Highscores
This guide will help you set up your own instance of Dynamic Highscores, whether you're duplicating the Space or running it locally.
### Duplicating the Space
The easiest way to get started is to duplicate the HuggingFace Space:
1. Navigate to the original Dynamic Highscores Space
2. Click the "Duplicate this Space" button
3. Choose a name for your Space
4. Wait for the Space to be created and deployed
That's it! The system is designed to work out-of-the-box without additional configuration.
### Running Locally
To run Dynamic Highscores locally:
1. Clone the repository:
```bash
git clone https://huggingface.co/spaces/username/dynamic-highscores
cd dynamic-highscores
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Run the application:
```bash
python app.py
```
4. Open your browser and navigate to `http://localhost:7860`
### Configuration Options
Dynamic Highscores can be configured through environment variables:
- `ADMIN_USERNAME`: Username for admin access (default: "Quazim0t0")
- `DB_PATH`: Path to SQLite database file (default: "dynamic_highscores.db")
- `MEMORY_LIMIT_GB`: Memory limit for model evaluation in GB (default: 14)
### Adding Sample Benchmarks
The system comes with sample benchmarks, but you can add more:
1. Navigate to the "Benchmarks" tab
2. Click "Add New Benchmark"
3. Enter a HuggingFace dataset ID (e.g., "cais/mmlu", "openai/humaneval")
4. Add a name and description
5. Select evaluation metrics
6. Click "Add as Benchmark"
### Setting Up OAuth (Advanced)
If you're running your own instance outside of HuggingFace Spaces, you'll need to set up OAuth:
1. Create a HuggingFace application at https://huggingface.co/settings/applications
2. Set the redirect URI to your application's URL
3. Set the following environment variables:
```
HF_CLIENT_ID=your_client_id
HF_CLIENT_SECRET=your_client_secret
HF_REDIRECT_URI=your_redirect_uri
```
## Troubleshooting
### Login Issues
- Ensure you're logged in to HuggingFace
- Check browser console for any errors
- Try clearing cookies and cache
### Evaluation Failures
- Check model size (must be under memory limit)
- Verify dataset exists and is accessible
- Check logs for specific error messages
### Database Issues
- Ensure the database file is writable
- Check for disk space issues
- Try backing up and recreating the database
""")
with gr.TabItem("Development Guide", id=3):
gr.Markdown("""
## Development Guide
This guide is for developers who want to contribute to the Dynamic Highscores project or extend its functionality.
### Project Architecture
Dynamic Highscores follows a modular architecture:
- **Frontend**: Gradio-based UI components
- **Backend**: Python modules for business logic
- **Database**: SQLite for data storage
- **Evaluation**: CPU-based model evaluation system
### Key Components
1. **Authentication System** (auth.py)
- Handles HuggingFace OAuth
- Manages user sessions
- Controls access to features
2. **Database Schema** (database_schema.py)
- Defines tables for benchmarks, models, users, and evaluations
- Provides CRUD operations for data management
3. **Benchmark Selection** (benchmark_selection.py)
- UI for browsing and adding benchmarks
- Integration with HuggingFace datasets
4. **Evaluation Queue** (evaluation_queue.py)
- Manages model evaluation jobs
- Handles CPU-only processing
- Implements progress tracking
5. **Leaderboard** (leaderboard.py)
- Displays evaluation results
- Provides filtering and sorting
- Visualizes performance metrics
6. **Model Configuration** (model_config.py)
- Manages model-specific configurations
- Provides parameter presets for different architectures
### Development Workflow
1. **Setup Development Environment**
```bash
git clone https://huggingface.co/spaces/username/dynamic-highscores
cd dynamic-highscores
pip install -r requirements.txt
```
2. **Make Changes**
- Modify code as needed
- Add new features or fix bugs
- Update documentation
3. **Test Changes**
```bash
python test_app.py # Run test suite
python app.py # Run application locally
```
4. **Submit Changes**
- If you have access, push directly to the repository
- Otherwise, submit a pull request with your changes
### Adding New Features
To add a new feature to Dynamic Highscores:
1. **Identify the Component**: Determine which component should contain your feature
2. **Implement Backend Logic**: Add necessary functions and classes
3. **Create UI Components**: Add Gradio UI elements
4. **Connect UI to Backend**: Wire up event handlers
5. **Update Documentation**: Document your new feature
6. **Test Thoroughly**: Ensure everything works as expected
### Extending Model Configurations
To add support for a new model architecture:
1. Add a new configuration file in the `model_configs` directory
2. Define optimal parameters for the architecture
3. Update the UI to include the new configuration option
### Implementing Custom Evaluation Methods
To add a new evaluation method:
1. Add a new method to the `EvaluationQueue` class
2. Implement the evaluation logic
3. Update the `_run_evaluation` method to use your new method
4. Add appropriate metrics to the results
### Best Practices
- **Keep It Simple**: Favor simplicity over complexity
- **Document Everything**: Add docstrings and comments
- **Write Tests**: Ensure your code works as expected
- **Follow Conventions**: Maintain consistent coding style
- **Consider Performance**: Optimize for CPU-based evaluation
- **Think About Security**: Protect user data and tokens
### Getting Help
If you need assistance with development:
- Check the existing documentation
- Look at the code for similar features
- Reach out to the project maintainers
- Ask questions in the community forum
We welcome all contributions and are happy to help new developers get started!
""")
# Event handlers
def refresh_configs():
configs = model_config_manager.get_available_configs()
# Format for dataframe
formatted_configs = []
for config in configs:
formatted_configs.append([
config["name"],
config["description"]
])
# Update dropdown choices for edit
config_choices = [(c["id"], c["name"]) for c in configs]
return formatted_configs, gr.update(choices=config_choices)
def view_config(evt: gr.SelectData, configs):
if evt.index[0] < len(configs):
config_name = configs[evt.index[0]][0]
# Find config by name
all_configs = model_config_manager.get_available_configs()
selected = None
for config in all_configs:
if config["name"] == config_name:
selected = config
break
if selected:
return selected
return None
def add_config_handler(name, description, temperature, top_k, top_p, min_p, repetition_penalty):
if not name:
return "Please enter a name for the configuration."
# Create parameters dictionary
parameters = {
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"min_p": min_p,
"repetition_penalty": repetition_penalty
}
# Add configuration
config_id = model_config_manager.add_config(name, description, parameters)
if config_id:
return f"✅ Configuration '{name}' added successfully."
else:
return "❌ Failed to add configuration."
def load_config_for_edit(config_id):
if not config_id:
return [gr.update() for _ in range(7)]
config = model_config_manager.get_config(config_id)
if not config:
return [gr.update() for _ in range(7)]
# Extract parameters with defaults
params = config.get("parameters", {})
temperature = params.get("temperature", 0.7)
top_k = params.get("top_k", 50)
top_p = params.get("top_p", 0.9)
min_p = params.get("min_p", 0.01)
repetition_penalty = params.get("repetition_penalty", 1.1)
return [
gr.update(value=config["name"]),
gr.update(value=config.get("description", "")),
gr.update(value=temperature),
gr.update(value=top_k),
gr.update(value=top_p),
gr.update(value=min_p),
gr.update(value=repetition_penalty)
]
def update_config_handler(config_id, name, description, temperature, top_k, top_p, min_p, repetition_penalty):
if not config_id:
return "Please select a configuration to update."
# Create parameters dictionary
parameters = {
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"min_p": min_p,
"repetition_penalty": repetition_penalty
}
# Update configuration
success = model_config_manager.update_config(config_id, name, description, parameters)
if success:
return f"✅ Configuration '{name}' updated successfully."
else:
return "❌ Failed to update configuration."
def delete_config_handler(config_id):
if not config_id:
return "Please select a configuration to delete."
# Delete configuration
success = model_config_manager.delete_config(config_id)
if success:
return f"✅ Configuration deleted successfully."
else:
return "❌ Failed to delete configuration."
# Connect event handlers
refresh_configs_button.click(
fn=refresh_configs,
inputs=[],
outputs=[config_list, edit_config_id]
)
config_list.select(
fn=view_config,
inputs=[config_list],
outputs=[selected_config]
)
add_config_button.click(
fn=add_config_handler,
inputs=[config_name, config_description, temperature, top_k, top_p, min_p, repetition_penalty],
outputs=[add_config_status]
)
edit_config_id.change(
fn=load_config_for_edit,
inputs=[edit_config_id],
outputs=[edit_config_name, edit_config_description, edit_temperature, edit_top_k, edit_top_p, edit_min_p, edit_repetition_penalty]
)
update_config_button.click(
fn=update_config_handler,
inputs=[edit_config_id, edit_config_name, edit_config_description, edit_temperature, edit_top_k, edit_top_p, edit_min_p, edit_repetition_penalty],
outputs=[edit_config_status]
)
delete_config_button.click(
fn=delete_config_handler,
inputs=[edit_config_id],
outputs=[edit_config_status]
)
# Load configurations on page load
community_ui.load(
fn=refresh_configs,
inputs=[],
outputs=[config_list, edit_config_id]
)
return community_ui
|