File size: 13,349 Bytes
9a46619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
"""
Leaderboard module for Dynamic Highscores system.
This module implements the unified leaderboard with tag-based filtering
for displaying all evaluated models.
"""
import os
import json
import pandas as pd
import gradio as gr
import plotly.express as px
import plotly.graph_objects as go
class Leaderboard:
"""Manages the unified leaderboard with filtering capabilities."""
def __init__(self, db_manager):
"""Initialize the leaderboard manager.
Args:
db_manager: Database manager instance
"""
self.db_manager = db_manager
self.model_tags = ["All", "Merge", "Agent", "Reasoning", "Coding", "General", "Specialized", "Instruction", "Chat"]
# Define color scheme for tags
self.tag_colors = {
"Merge": "#FF6B6B",
"Agent": "#4ECDC4",
"Reasoning": "#FFD166",
"Coding": "#6B5B95",
"General": "#88D8B0",
"Specialized": "#FF8C42",
"Instruction": "#5D9CEC",
"Chat": "#AC92EB"
}
def get_leaderboard_data(self, tag=None, benchmark_id=None):
"""Get leaderboard data, optionally filtered by tag or benchmark.
Args:
tag: Model tag to filter by (None for all)
benchmark_id: Benchmark ID to filter by (None for all)
Returns:
pd.DataFrame: Leaderboard data
"""
# Get evaluation results from database
if tag and tag != "All":
df = self.db_manager.get_leaderboard_df(tag=tag, benchmark_id=benchmark_id)
else:
df = self.db_manager.get_leaderboard_df(benchmark_id=benchmark_id)
return df
def format_leaderboard_for_display(self, df):
"""Format leaderboard data for display.
Args:
df: Leaderboard DataFrame
Returns:
pd.DataFrame: Formatted leaderboard for display
"""
if df.empty:
return pd.DataFrame(columns=['Model', 'Benchmark', 'Tag', 'Score', 'Completed'])
# Select and rename columns for display
display_df = df[['model_name', 'benchmark_name', 'tag', 'score', 'completed_at']].copy()
display_df.columns = ['Model', 'Benchmark', 'Tag', 'Score', 'Completed']
# Round score to 2 decimal places
display_df['Score'] = display_df['Score'].round(2)
# Sort by score (descending)
display_df = display_df.sort_values('Score', ascending=False)
return display_df
def create_performance_chart(self, df, chart_type="bar"):
"""Create a performance chart from leaderboard data.
Args:
df: Leaderboard DataFrame
chart_type: Type of chart to create ("bar" or "scatter")
Returns:
plotly.graph_objects.Figure: Performance chart
"""
if df.empty:
# Return empty figure
fig = go.Figure()
fig.update_layout(
title="No data available",
xaxis_title="Model",
yaxis_title="Score"
)
return fig
# Prepare data for visualization
plot_df = df[['model_name', 'benchmark_name', 'tag', 'score']].copy()
plot_df.columns = ['Model', 'Benchmark', 'Tag', 'Score']
# Create chart based on type
if chart_type == "scatter":
fig = px.scatter(
plot_df,
x="Model",
y="Score",
color="Tag",
symbol="Benchmark",
size="Score",
hover_data=["Model", "Benchmark", "Score"],
color_discrete_map=self.tag_colors
)
else: # Default to bar chart
fig = px.bar(
plot_df,
x="Model",
y="Score",
color="Tag",
barmode="group",
hover_data=["Model", "Benchmark", "Score"],
color_discrete_map=self.tag_colors
)
# Customize layout
fig.update_layout(
title="Model Performance Comparison",
xaxis_title="Model",
yaxis_title="Score",
legend_title="Tag",
font=dict(size=12)
)
return fig
def create_tag_distribution_chart(self, df):
"""Create a chart showing distribution of models by tag.
Args:
df: Leaderboard DataFrame
Returns:
plotly.graph_objects.Figure: Tag distribution chart
"""
if df.empty:
# Return empty figure
fig = go.Figure()
fig.update_layout(
title="No data available",
xaxis_title="Tag",
yaxis_title="Count"
)
return fig
# Count models by tag
tag_counts = df['tag'].value_counts().reset_index()
tag_counts.columns = ['Tag', 'Count']
# Create pie chart
fig = px.pie(
tag_counts,
names='Tag',
values='Count',
title='Model Distribution by Tag',
color='Tag',
color_discrete_map=self.tag_colors
)
# Customize layout
fig.update_layout(
font=dict(size=12)
)
return fig
def create_benchmark_comparison_chart(self, df):
"""Create a chart comparing performance across benchmarks.
Args:
df: Leaderboard DataFrame
Returns:
plotly.graph_objects.Figure: Benchmark comparison chart
"""
if df.empty:
# Return empty figure
fig = go.Figure()
fig.update_layout(
title="No data available",
xaxis_title="Benchmark",
yaxis_title="Average Score"
)
return fig
# Calculate average score by benchmark
benchmark_avg = df.groupby('benchmark_name')['score'].mean().reset_index()
benchmark_avg.columns = ['Benchmark', 'Average Score']
# Create bar chart
fig = px.bar(
benchmark_avg,
x='Benchmark',
y='Average Score',
title='Average Performance by Benchmark',
color='Benchmark'
)
# Customize layout
fig.update_layout(
xaxis_title="Benchmark",
yaxis_title="Average Score",
font=dict(size=12)
)
return fig
# Leaderboard UI components
def create_leaderboard_ui(leaderboard, db_manager):
"""Create the leaderboard UI components.
Args:
leaderboard: Leaderboard instance
db_manager: Database manager instance
Returns:
gr.Blocks: Gradio Blocks component with leaderboard UI
"""
with gr.Blocks() as leaderboard_ui:
gr.Markdown("# Dynamic Highscores Leaderboard")
with gr.Row():
with gr.Column(scale=1):
tag_filter = gr.Dropdown(
choices=leaderboard.model_tags,
value="All",
label="Filter by Tag"
)
benchmark_filter = gr.Dropdown(
choices=[("all", "All Benchmarks")],
value="all",
label="Filter by Benchmark"
)
refresh_button = gr.Button("Refresh Leaderboard")
with gr.Column(scale=2):
chart_type = gr.Radio(
choices=["bar", "scatter"],
value="bar",
label="Chart Type"
)
view_type = gr.Radio(
choices=["Table", "Chart", "Dashboard"],
value="Table",
label="View Type"
)
# Table view
leaderboard_table = gr.Dataframe(
headers=["Model", "Benchmark", "Tag", "Score", "Completed"],
label="Leaderboard",
visible=True
)
# Chart view
with gr.Row(visible=False) as chart_view:
performance_chart = gr.Plot(label="Performance Chart")
# Dashboard view
with gr.Row(visible=False) as dashboard_view:
with gr.Column(scale=2):
dashboard_performance_chart = gr.Plot(label="Performance Comparison")
with gr.Column(scale=1):
with gr.Row():
tag_distribution_chart = gr.Plot(label="Model Distribution")
with gr.Row():
benchmark_comparison_chart = gr.Plot(label="Benchmark Comparison")
# Event handlers
def refresh_benchmarks():
try:
benchmarks = db_manager.get_benchmarks()
# Format for dropdown
choices = [("all", "All Benchmarks")]
choices.extend([(str(b["id"]), b["name"]) for b in benchmarks])
return gr.update(choices=choices)
except Exception as e:
print(f"Error refreshing benchmarks: {e}")
return gr.update(choices=[("all", "All Benchmarks")])
def update_leaderboard(tag, benchmark_id, chart_type_val, view_type_val):
try:
# Get leaderboard data
if benchmark_id == "all":
benchmark_id = None
df = leaderboard.get_leaderboard_data(tag=tag, benchmark_id=benchmark_id)
# Format for display
display_df = leaderboard.format_leaderboard_for_display(df)
# Create charts
perf_chart = leaderboard.create_performance_chart(df, chart_type=chart_type_val)
tag_chart = leaderboard.create_tag_distribution_chart(df)
benchmark_chart = leaderboard.create_benchmark_comparison_chart(df)
# Update visibility based on view type
table_visible = view_type_val == "Table"
chart_visible = view_type_val == "Chart"
dashboard_visible = view_type_val == "Dashboard"
return (
display_df,
perf_chart,
perf_chart, # Same chart for both views
tag_chart,
benchmark_chart,
gr.update(visible=table_visible),
gr.update(visible=chart_visible),
gr.update(visible=dashboard_visible)
)
except Exception as e:
print(f"Error updating leaderboard: {e}")
empty_df = pd.DataFrame(columns=['Model', 'Benchmark', 'Tag', 'Score', 'Completed'])
empty_chart = go.Figure()
empty_chart.update_layout(title="Error loading data")
return (
empty_df,
empty_chart,
empty_chart,
empty_chart,
empty_chart,
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
)
# Connect event handlers
refresh_button.click(
fn=lambda tag, benchmark, chart_t, view_t: update_leaderboard(tag, benchmark, chart_t, view_t),
inputs=[tag_filter, benchmark_filter, chart_type, view_type],
outputs=[
leaderboard_table,
performance_chart,
dashboard_performance_chart,
tag_distribution_chart,
benchmark_comparison_chart,
leaderboard_table,
chart_view,
dashboard_view
]
)
view_type.change(
fn=lambda view_t: (
gr.update(visible=view_t == "Table"),
gr.update(visible=view_t == "Chart"),
gr.update(visible=view_t == "Dashboard")
),
inputs=[view_type],
outputs=[leaderboard_table, chart_view, dashboard_view]
)
# Initialize on load
leaderboard_ui.load(
fn=refresh_benchmarks,
inputs=[],
outputs=[benchmark_filter]
)
leaderboard_ui.load(
fn=lambda: update_leaderboard("All", "all", "bar", "Table"),
inputs=[],
outputs=[
leaderboard_table,
performance_chart,
dashboard_performance_chart,
tag_distribution_chart,
benchmark_comparison_chart,
leaderboard_table,
chart_view,
dashboard_view
]
)
return leaderboard_ui |