File size: 16,927 Bytes
9a46619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
"""
Database schema for Dynamic Highscores system.
This module defines the SQLite database schema for the Dynamic Highscores system,
which integrates benchmark selection, model evaluation, and leaderboard functionality.
"""
import sqlite3
import os
import json
import threading
from datetime import datetime, timedelta
import pandas as pd
class ThreadLocalDB:
"""Thread-local database connection manager."""
_thread_local = threading.local()
def __init__(self, db_path):
"""Initialize with database path."""
self.db_path = db_path
def get_connection(self):
"""Get a thread-local database connection."""
if not hasattr(self._thread_local, 'conn') or self._thread_local.conn is None:
self._thread_local.conn = sqlite3.connect(self.db_path)
self._thread_local.conn.row_factory = sqlite3.Row
return self._thread_local.conn
def get_cursor(self):
"""Get a cursor from the thread-local connection."""
conn = self.get_connection()
if not hasattr(self._thread_local, 'cursor') or self._thread_local.cursor is None:
self._thread_local.cursor = conn.cursor()
return self._thread_local.cursor
def close(self):
"""Close the thread-local connection if it exists."""
if hasattr(self._thread_local, 'conn') and self._thread_local.conn is not None:
if hasattr(self._thread_local, 'cursor') and self._thread_local.cursor is not None:
self._thread_local.cursor.close()
self._thread_local.cursor = None
self._thread_local.conn.close()
self._thread_local.conn = None
class DynamicHighscoresDB:
"""Database manager for the Dynamic Highscores system."""
def __init__(self, db_path="dynamic_highscores.db"):
"""Initialize the database connection and create tables if they don't exist."""
self.db_path = db_path
self.thread_local_db = ThreadLocalDB(db_path)
self.create_tables()
def get_conn(self):
"""Get the thread-local database connection."""
return self.thread_local_db.get_connection()
def get_cursor(self):
"""Get the thread-local database cursor."""
return self.thread_local_db.get_cursor()
def close(self):
"""Close the thread-local database connection."""
self.thread_local_db.close()
def create_tables(self):
"""Create all necessary tables if they don't exist."""
cursor = self.get_cursor()
conn = self.get_conn()
# Users table - stores user information
cursor.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
hf_user_id TEXT UNIQUE NOT NULL,
is_admin BOOLEAN DEFAULT 0,
last_submission_date TEXT,
created_at TEXT DEFAULT CURRENT_TIMESTAMP
)
''')
# Benchmarks table - stores information about available benchmarks
cursor.execute('''
CREATE TABLE IF NOT EXISTS benchmarks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
dataset_id TEXT NOT NULL,
description TEXT,
metrics TEXT, -- JSON string of metrics
created_at TEXT DEFAULT CURRENT_TIMESTAMP
)
''')
# Models table - stores information about submitted models
cursor.execute('''
CREATE TABLE IF NOT EXISTS models (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
hf_model_id TEXT NOT NULL,
user_id INTEGER NOT NULL,
tag TEXT NOT NULL, -- One of: Merge, Agent, Reasoning, Coding, etc.
parameters TEXT, -- Number of parameters (can be NULL)
description TEXT,
created_at TEXT DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (user_id) REFERENCES users (id),
UNIQUE (hf_model_id, user_id)
)
''')
# Evaluations table - stores evaluation results
cursor.execute('''
CREATE TABLE IF NOT EXISTS evaluations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id INTEGER NOT NULL,
benchmark_id INTEGER NOT NULL,
status TEXT NOT NULL, -- pending, running, completed, failed
results TEXT, -- JSON string of results
score REAL, -- Overall score (can be NULL)
submitted_at TEXT DEFAULT CURRENT_TIMESTAMP,
started_at TEXT,
completed_at TEXT,
FOREIGN KEY (model_id) REFERENCES models (id),
FOREIGN KEY (benchmark_id) REFERENCES benchmarks (id)
)
''')
# Queue table - stores evaluation queue
cursor.execute('''
CREATE TABLE IF NOT EXISTS queue (
id INTEGER PRIMARY KEY AUTOINCREMENT,
evaluation_id INTEGER NOT NULL,
priority INTEGER DEFAULT 0, -- Higher number = higher priority
added_at TEXT DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (evaluation_id) REFERENCES evaluations (id)
)
''')
conn.commit()
# User management methods
def add_user(self, username, hf_user_id, is_admin=False):
"""Add a new user to the database."""
cursor = self.get_cursor()
conn = self.get_conn()
try:
cursor.execute(
"INSERT INTO users (username, hf_user_id, is_admin) VALUES (?, ?, ?)",
(username, hf_user_id, is_admin)
)
conn.commit()
return cursor.lastrowid
except sqlite3.IntegrityError:
# User already exists
cursor.execute(
"SELECT id FROM users WHERE hf_user_id = ?",
(hf_user_id,)
)
row = cursor.fetchone()
return row[0] if row else None
def get_user(self, hf_user_id):
"""Get user information by HuggingFace user ID."""
cursor = self.get_cursor()
cursor.execute(
"SELECT * FROM users WHERE hf_user_id = ?",
(hf_user_id,)
)
row = cursor.fetchone()
return dict(row) if row else None
def get_user_by_username(self, username):
"""Get user information by username."""
cursor = self.get_cursor()
cursor.execute(
"SELECT * FROM users WHERE username = ?",
(username,)
)
row = cursor.fetchone()
return dict(row) if row else None
def can_submit_today(self, user_id):
"""Check if a user can submit a benchmark evaluation today."""
cursor = self.get_cursor()
cursor.execute(
"SELECT is_admin, last_submission_date FROM users WHERE id = ?",
(user_id,)
)
result = cursor.fetchone()
if not result:
return False
user_data = dict(result)
# Admin can always submit
if user_data['is_admin']:
return True
# If no previous submission, user can submit
if not user_data['last_submission_date']:
return True
# Check if last submission was before today
last_date = datetime.fromisoformat(user_data['last_submission_date'])
today = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0)
return last_date < today
def update_submission_date(self, user_id):
"""Update the last submission date for a user."""
cursor = self.get_cursor()
conn = self.get_conn()
current_time = datetime.now().isoformat()
cursor.execute(
"UPDATE users SET last_submission_date = ? WHERE id = ?",
(current_time, user_id)
)
conn.commit()
# Benchmark management methods
def add_benchmark(self, name, dataset_id, description="", metrics=None):
"""Add a new benchmark to the database."""
cursor = self.get_cursor()
conn = self.get_conn()
if metrics is None:
metrics = {}
metrics_json = json.dumps(metrics)
try:
cursor.execute(
"INSERT INTO benchmarks (name, dataset_id, description, metrics) VALUES (?, ?, ?, ?)",
(name, dataset_id, description, metrics_json)
)
conn.commit()
return cursor.lastrowid
except sqlite3.IntegrityError:
# Benchmark already exists with this dataset_id
cursor.execute(
"SELECT id FROM benchmarks WHERE dataset_id = ?",
(dataset_id,)
)
row = cursor.fetchone()
return row[0] if row else None
def get_benchmarks(self):
"""Get all available benchmarks."""
cursor = self.get_cursor()
cursor.execute("SELECT * FROM benchmarks")
benchmarks = [dict(row) for row in cursor.fetchall()]
# Parse metrics JSON
for benchmark in benchmarks:
if benchmark['metrics']:
benchmark['metrics'] = json.loads(benchmark['metrics'])
else:
benchmark['metrics'] = {}
return benchmarks
def get_benchmark(self, benchmark_id):
"""Get benchmark information by ID."""
cursor = self.get_cursor()
cursor.execute(
"SELECT * FROM benchmarks WHERE id = ?",
(benchmark_id,)
)
row = cursor.fetchone()
benchmark = dict(row) if row else None
if benchmark and benchmark['metrics']:
benchmark['metrics'] = json.loads(benchmark['metrics'])
return benchmark
# Model management methods
def add_model(self, name, hf_model_id, user_id, tag, parameters=None, description=""):
"""Add a new model to the database."""
cursor = self.get_cursor()
conn = self.get_conn()
try:
cursor.execute(
"INSERT INTO models (name, hf_model_id, user_id, tag, parameters, description) VALUES (?, ?, ?, ?, ?, ?)",
(name, hf_model_id, user_id, tag, parameters, description)
)
conn.commit()
return cursor.lastrowid
except sqlite3.IntegrityError:
# Model already exists for this user
cursor.execute(
"SELECT id FROM models WHERE hf_model_id = ? AND user_id = ?",
(hf_model_id, user_id)
)
row = cursor.fetchone()
return row[0] if row else None
def get_models(self, tag=None):
"""Get all models, optionally filtered by tag."""
cursor = self.get_cursor()
if tag and tag.lower() != "all":
cursor.execute(
"SELECT * FROM models WHERE tag = ?",
(tag,)
)
else:
cursor.execute("SELECT * FROM models")
return [dict(row) for row in cursor.fetchall()]
def get_model(self, model_id):
"""Get model information by ID."""
cursor = self.get_cursor()
cursor.execute(
"SELECT * FROM models WHERE id = ?",
(model_id,)
)
row = cursor.fetchone()
return dict(row) if row else None
# Evaluation management methods
def add_evaluation(self, model_id, benchmark_id, priority=0):
"""Add a new evaluation to the database and queue."""
cursor = self.get_cursor()
conn = self.get_conn()
# First, add the evaluation
cursor.execute(
"INSERT INTO evaluations (model_id, benchmark_id, status) VALUES (?, ?, 'pending')",
(model_id, benchmark_id)
)
evaluation_id = cursor.lastrowid
# Then, add it to the queue
cursor.execute(
"INSERT INTO queue (evaluation_id, priority) VALUES (?, ?)",
(evaluation_id, priority)
)
conn.commit()
return evaluation_id
def update_evaluation_status(self, evaluation_id, status, results=None, score=None):
"""Update the status of an evaluation."""
cursor = self.get_cursor()
conn = self.get_conn()
params = [status, evaluation_id]
sql = "UPDATE evaluations SET status = ?"
if results is not None:
sql += ", results = ?"
params.insert(1, json.dumps(results))
if score is not None:
sql += ", score = ?"
params.insert(1 if results is None else 2, score)
if status in ['completed', 'failed']:
sql += ", completed_at = datetime('now')"
elif status == 'running':
sql += ", started_at = datetime('now')"
sql += " WHERE id = ?"
cursor.execute(sql, params)
conn.commit()
def get_next_in_queue(self):
"""Get the next evaluation in the queue."""
cursor = self.get_cursor()
cursor.execute("""
SELECT q.*, e.id as evaluation_id, e.model_id, e.benchmark_id, e.status
FROM queue q
JOIN evaluations e ON q.evaluation_id = e.id
WHERE e.status = 'pending'
ORDER BY q.priority DESC, q.added_at ASC
LIMIT 1
""")
row = cursor.fetchone()
return dict(row) if row else None
def get_evaluation_results(self, model_id=None, benchmark_id=None, tag=None, status=None, limit=None):
"""Get evaluation results, optionally filtered by model, benchmark, tag, or status."""
cursor = self.get_cursor()
sql = """
SELECT e.id, e.model_id, e.benchmark_id, e.status, e.results, e.score,
e.submitted_at, e.started_at, e.completed_at, m.name as model_name, m.tag,
b.name as benchmark_name
FROM evaluations e
JOIN models m ON e.model_id = m.id
JOIN benchmarks b ON e.benchmark_id = b.id
WHERE 1=1
"""
params = []
if status:
sql += " AND e.status = ?"
params.append(status)
if model_id:
sql += " AND e.model_id = ?"
params.append(model_id)
if benchmark_id and benchmark_id != "all" and benchmark_id.lower() != "all":
sql += " AND e.benchmark_id = ?"
params.append(benchmark_id)
if tag and tag.lower() != "all":
sql += " AND m.tag = ?"
params.append(tag)
sql += " ORDER BY e.submitted_at DESC"
if limit:
sql += " LIMIT ?"
params.append(limit)
cursor.execute(sql, params)
results = [dict(row) for row in cursor.fetchall()]
# Parse results JSON
for result in results:
if result['results']:
try:
result['results'] = json.loads(result['results'])
except:
result['results'] = {}
return results
def get_leaderboard_df(self, tag=None, benchmark_id=None):
"""Get a pandas DataFrame of the leaderboard, optionally filtered by tag and benchmark."""
results = self.get_evaluation_results(tag=tag, benchmark_id=benchmark_id, status="completed")
if not results:
return pd.DataFrame()
# Create a list of dictionaries for the DataFrame
leaderboard_data = []
for result in results:
entry = {
'model_name': result['model_name'],
'tag': result['tag'],
'benchmark_name': result['benchmark_name'],
'score': result['score'],
'completed_at': result['completed_at']
}
# Add any additional metrics from results
if result['results'] and isinstance(result['results'], dict):
for key, value in result['results'].items():
if isinstance(value, (int, float)) and key not in entry:
entry[key] = value
leaderboard_data.append(entry)
# Convert to DataFrame
df = pd.DataFrame(leaderboard_data)
# Sort by score (descending)
if not df.empty and 'score' in df.columns:
df = df.sort_values('score', ascending=False)
return df |