File size: 22,041 Bytes
9a46619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
"""
Benchmark selection module for Dynamic Highscores system.
This module handles browsing, selection, and loading of HuggingFace datasets
to be used as benchmarks for model evaluation.
"""
import os
import json
import gradio as gr
from huggingface_hub import HfApi, list_datasets
from datasets import load_dataset, get_dataset_config_names
from functools import partial
class BenchmarkSelector:
"""Benchmark selection manager for HuggingFace datasets."""
def __init__(self, db_manager, auth_manager):
"""Initialize the benchmark selector.
Args:
db_manager: Database manager instance for benchmark storage
auth_manager: Authentication manager instance for access control
"""
self.db_manager = db_manager
self.auth_manager = auth_manager
self.hf_api = HfApi()
# Common benchmark categories for filtering
self.categories = [
"All",
"Text Generation",
"Question Answering",
"Summarization",
"Translation",
"Classification",
"Code Generation",
"Reasoning",
"Math"
]
# Common metrics for different benchmark types
self.metric_templates = {
"Text Generation": ["bleu", "rouge", "meteor"],
"Question Answering": ["exact_match", "f1"],
"Summarization": ["rouge1", "rouge2", "rougeL"],
"Translation": ["bleu", "ter"],
"Classification": ["accuracy", "f1", "precision", "recall"],
"Code Generation": ["exact_match", "pass@k", "functional_correctness"],
"Reasoning": ["accuracy", "consistency"],
"Math": ["accuracy", "correct_steps"]
}
def search_datasets(self, query, category="All", limit=50):
"""Search for datasets on HuggingFace.
Args:
query: Search query string
category: Dataset category to filter by
limit: Maximum number of results to return
Returns:
list: List of dataset information dictionaries
"""
try:
# Apply category filter if not "All"
filter_str = None
if category != "All":
filter_str = f"task_categories:{category}"
# Search for datasets
datasets = list_datasets(
search=query,
filter=filter_str,
limit=limit
)
# Format results
results = []
for dataset in datasets:
# Handle cases where description might be missing
dataset_description = ""
if hasattr(dataset, 'description') and dataset.description:
dataset_description = dataset.description[:200] + "..." if len(dataset.description) > 200 else dataset.description
# Handle cases where tags might be missing
dataset_tags = []
if hasattr(dataset, 'tags'):
dataset_tags = dataset.tags
# Handle cases where downloads might be missing
dataset_downloads = 0
if hasattr(dataset, 'downloads'):
dataset_downloads = dataset.downloads
# Handle cases where author might be missing
dataset_author = ""
if hasattr(dataset, 'author'):
dataset_author = dataset.author
results.append({
"id": dataset.id,
"name": dataset.id.split("/")[-1],
"author": dataset_author,
"description": dataset_description,
"tags": dataset_tags,
"downloads": dataset_downloads
})
return results
except Exception as e:
print(f"Dataset search error: {e}")
return []
def get_dataset_info(self, dataset_id):
"""Get detailed information about a dataset.
Args:
dataset_id: HuggingFace dataset ID
Returns:
dict: Dataset information
"""
try:
# Get dataset info from HuggingFace
dataset_info = self.hf_api.dataset_info(dataset_id)
# Get available configurations
configs = []
try:
configs = get_dataset_config_names(dataset_id)
except Exception as e:
print(f"Error getting dataset configs: {e}")
# Handle missing attributes safely
dataset_description = ""
if hasattr(dataset_info, 'description'):
dataset_description = dataset_info.description
dataset_citation = ""
if hasattr(dataset_info, 'citation'):
dataset_citation = dataset_info.citation
dataset_tags = []
if hasattr(dataset_info, 'tags'):
dataset_tags = dataset_info.tags
dataset_downloads = 0
if hasattr(dataset_info, 'downloads'):
dataset_downloads = dataset_info.downloads
dataset_author = ""
if hasattr(dataset_info, 'author'):
dataset_author = dataset_info.author
# Format result
result = {
"id": dataset_info.id,
"name": dataset_info.id.split("/")[-1],
"author": dataset_author,
"description": dataset_description,
"citation": dataset_citation,
"configs": configs,
"tags": dataset_tags,
"downloads": dataset_downloads
}
return result
except Exception as e:
print(f"Dataset info error: {e}")
return None
def load_dataset_sample(self, dataset_id, config=None, split="train", sample_size=5):
"""Load a sample from a dataset.
Args:
dataset_id: HuggingFace dataset ID
config: Dataset configuration name
split: Dataset split to sample from
sample_size: Number of samples to load
Returns:
dict: Dataset sample information
"""
try:
# Load dataset
if config:
dataset = load_dataset(dataset_id, config, split=split)
else:
dataset = load_dataset(dataset_id, split=split)
# Get sample
if len(dataset) > sample_size:
sample = dataset.select(range(sample_size))
else:
sample = dataset
# Get features
features = list(sample.features.keys())
# Convert sample to list of dictionaries
sample_data = []
for item in sample:
sample_item = {}
for key in features:
# Convert non-serializable values to strings
if isinstance(item[key], (list, dict)):
sample_item[key] = str(item[key])
else:
sample_item[key] = item[key]
sample_data.append(sample_item)
# Format result
result = {
"id": dataset_id,
"config": config,
"split": split,
"features": features,
"sample": sample_data,
"total_size": len(dataset)
}
return result
except Exception as e:
print(f"Dataset sample error: {e}")
return None
def add_benchmark(self, dataset_id, name=None, description=None, metrics=None, config=None):
"""Add a dataset as a benchmark.
Args:
dataset_id: HuggingFace dataset ID
name: Benchmark name (defaults to dataset name)
description: Benchmark description (defaults to dataset description)
metrics: Metrics to use for evaluation
config: Dataset configuration to use
Returns:
int: Benchmark ID if successful, None otherwise
"""
try:
# Get dataset info if name or description not provided
if not name or not description:
dataset_info = self.get_dataset_info(dataset_id)
if not dataset_info:
return None
if not name:
name = dataset_info["name"]
if not description:
description = dataset_info["description"]
# Format dataset ID with config if provided
full_dataset_id = dataset_id
if config:
full_dataset_id = f"{dataset_id}:{config}"
# Add benchmark to database
benchmark_id = self.db_manager.add_benchmark(
name=name,
dataset_id=full_dataset_id,
description=description,
metrics=metrics
)
return benchmark_id
except Exception as e:
print(f"Add benchmark error: {e}")
return None
def get_benchmarks(self):
"""Get all available benchmarks.
Returns:
list: List of benchmark information dictionaries
"""
return self.db_manager.get_benchmarks()
# Benchmark selection UI components
def create_benchmark_selection_ui(benchmark_selector, auth_manager):
"""Create the benchmark selection UI components.
Args:
benchmark_selector: Benchmark selector instance
auth_manager: Authentication manager instance
Returns:
gr.Blocks: Gradio Blocks component with benchmark selection UI
"""
with gr.Blocks() as benchmark_ui:
gr.Markdown("## π Dynamic Highscores Benchmark Selection")
gr.Markdown("""
### Add your own datasets from HuggingFace as benchmarks!
You can add any dataset from HuggingFace to use as a benchmark for evaluating models.
Simply enter the dataset ID (e.g., 'squad', 'glue', 'hellaswag') and add it as a benchmark.
Other users will be able to select your added benchmarks for their model evaluations.
""", elem_classes=["info-text"])
with gr.Tabs() as tabs:
with gr.TabItem("β Add New Benchmark", id=0):
with gr.Row():
with gr.Column(scale=3):
search_input = gr.Textbox(
placeholder="Search for datasets on HuggingFace...",
label="Search",
show_label=False
)
with gr.Column(scale=1):
category_dropdown = gr.Dropdown(
choices=benchmark_selector.categories,
value="All",
label="Category"
)
with gr.Column(scale=1):
search_button = gr.Button("Search")
dataset_results = gr.Dataframe(
headers=["Name", "Author", "Description", "Downloads"],
datatype=["str", "str", "str", "number"],
label="Search Results",
interactive=True
)
with gr.Row():
with gr.Column(scale=2):
dataset_id_input = gr.Textbox(
placeholder="Enter HuggingFace dataset ID (e.g., 'squad', 'glue', 'hellaswag')",
label="Dataset ID",
info="You can enter any dataset ID from HuggingFace"
)
with gr.Column(scale=1):
view_button = gr.Button("View Dataset Details")
with gr.Accordion("Dataset Details", open=False):
dataset_info = gr.JSON(label="Dataset Information")
with gr.Row():
config_dropdown = gr.Dropdown(
label="Configuration",
choices=[],
interactive=True
)
split_dropdown = gr.Dropdown(
label="Split",
choices=["train", "validation", "test"],
value="train",
interactive=True
)
sample_button = gr.Button("Load Sample")
sample_data = gr.Dataframe(
label="Sample Data",
interactive=False
)
gr.Markdown("### Add this dataset as a benchmark")
with gr.Row():
with gr.Column(scale=2):
benchmark_name = gr.Textbox(
placeholder="Enter a name for this benchmark",
label="Benchmark Name",
info="A descriptive name for this benchmark"
)
benchmark_description = gr.Textbox(
placeholder="Enter a description for this benchmark",
label="Description",
info="Explain what this benchmark evaluates",
lines=3
)
with gr.Column(scale=1):
metrics_input = gr.CheckboxGroup(
label="Evaluation Metrics",
choices=[],
interactive=True,
info="Select metrics to use for evaluation"
)
with gr.Row():
add_benchmark_button = gr.Button("Add as Benchmark", size="lg", variant="primary")
benchmark_status = gr.Markdown("")
with gr.TabItem("π Available Benchmarks", id=1):
gr.Markdown("### Benchmarks available for model evaluation")
gr.Markdown("These benchmarks can be selected when submitting models for evaluation.")
with gr.Row():
refresh_benchmarks_button = gr.Button("Refresh Benchmarks")
reload_sample_benchmarks_button = gr.Button("Reload Sample Benchmarks", variant="secondary")
reload_status = gr.Markdown("")
benchmarks_container = gr.Column()
with benchmarks_container:
no_benchmarks_message = gr.Markdown(
"### No Datasets Added Yet\n\nBe the first to add a benchmark dataset! Go to the 'Add New Benchmark' tab to add a dataset from HuggingFace.",
visible=True
)
my_benchmarks = gr.Dataframe(
headers=["ID", "Name", "Dataset", "Description"],
label="Available Benchmarks",
interactive=True,
visible=False
)
# Event handlers
def search_datasets_handler(query, category):
if not query:
return None
results = benchmark_selector.search_datasets(query, category)
# Format for dataframe
formatted_results = []
for result in results:
formatted_results.append([
result["name"],
result["author"],
result["description"],
result["downloads"]
])
return formatted_results
def view_dataset_handler(dataset_id):
if not dataset_id:
return None, [], None
dataset_info = benchmark_selector.get_dataset_info(dataset_id)
if not dataset_info:
return None, [], None
# Update metrics based on dataset tags
metrics = []
for category, category_metrics in benchmark_selector.metric_templates.items():
if any(tag.lower() in [t.lower() for t in dataset_info["tags"]] for tag in category.lower().split()):
metrics.extend(category_metrics)
# Remove duplicates
metrics = list(set(metrics))
return dataset_info, dataset_info["configs"], gr.update(choices=metrics)
def load_sample_handler(dataset_id, config, split):
if not dataset_id:
return None
sample_info = benchmark_selector.load_dataset_sample(
dataset_id,
config=config if config else None,
split=split
)
if not sample_info:
return None
return sample_info["sample"]
def add_benchmark_handler(dataset_id, config, name, description, metrics, request: gr.Request):
if not dataset_id:
return "Please enter a dataset ID from HuggingFace."
# Check if user is logged in
user = auth_manager.check_login(request)
if not user:
return "Please log in to add benchmarks."
# Add benchmark
benchmark_id = benchmark_selector.add_benchmark(
dataset_id=dataset_id,
name=name if name else None,
description=description if description else None,
metrics=metrics if metrics else None,
config=config if config else None
)
if benchmark_id:
return f"β
Benchmark added successfully with ID: {benchmark_id}\n\nThis dataset is now available for model evaluation. You can view it in the 'Available Benchmarks' tab."
else:
return "β Failed to add benchmark. Please check the dataset ID and try again."
def get_benchmarks_handler(request: gr.Request):
# Check if user is logged in
user = auth_manager.check_login(request)
if not user:
return gr.update(visible=True), gr.update(visible=False), None
# Get benchmarks
benchmarks = benchmark_selector.get_benchmarks()
# If no benchmarks, show message
if not benchmarks or len(benchmarks) == 0:
return gr.update(visible=True), gr.update(visible=False), None
# Format for dataframe
formatted_benchmarks = []
for benchmark in benchmarks:
formatted_benchmarks.append([
benchmark["id"],
benchmark["name"],
benchmark["dataset_id"],
benchmark["description"]
])
return gr.update(visible=False), gr.update(visible=True), formatted_benchmarks
def reload_sample_benchmarks_handler():
try:
from sample_benchmarks import add_sample_benchmarks
num_added = add_sample_benchmarks()
return f"β
Successfully reloaded {num_added} sample benchmarks."
except Exception as e:
return f"β Error reloading benchmarks: {str(e)}"
# Connect event handlers
search_button.click(
fn=search_datasets_handler,
inputs=[search_input, category_dropdown],
outputs=[dataset_results]
)
view_button.click(
fn=view_dataset_handler,
inputs=[dataset_id_input],
outputs=[dataset_info, config_dropdown, metrics_input]
)
sample_button.click(
fn=load_sample_handler,
inputs=[dataset_id_input, config_dropdown, split_dropdown],
outputs=[sample_data]
)
add_benchmark_button.click(
fn=add_benchmark_handler,
inputs=[dataset_id_input, config_dropdown, benchmark_name, benchmark_description, metrics_input],
outputs=[benchmark_status]
)
refresh_benchmarks_button.click(
fn=get_benchmarks_handler,
inputs=[],
outputs=[no_benchmarks_message, my_benchmarks, my_benchmarks]
)
reload_sample_benchmarks_button.click(
fn=reload_sample_benchmarks_handler,
inputs=[],
outputs=[reload_status]
)
# Initialize benchmarks on load
benchmark_ui.load(
fn=get_benchmarks_handler,
inputs=[],
outputs=[no_benchmarks_message, my_benchmarks, my_benchmarks]
)
return benchmark_ui |