File size: 15,862 Bytes
6e76f85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
"""
Main application for Dynamic Highscores system.
This file integrates all components into a unified application.
"""
import os
import gradio as gr
import threading
import time
from database_schema import DynamicHighscoresDB
from auth import HuggingFaceAuth
from benchmark_selection import BenchmarkSelector, create_benchmark_selection_ui
from evaluation_queue import EvaluationQueue, create_model_submission_ui
from leaderboard import Leaderboard, create_leaderboard_ui
from sample_benchmarks import add_sample_benchmarks
# Initialize components in main thread
db = DynamicHighscoresDB()
auth_manager = HuggingFaceAuth(db)
benchmark_selector = BenchmarkSelector(db, auth_manager)
evaluation_queue = EvaluationQueue(db, auth_manager)
leaderboard = Leaderboard(db)
# Initialize sample benchmarks if none exist
print("Checking for existing benchmarks...")
benchmarks = db.get_benchmarks()
if not benchmarks or len(benchmarks) == 0:
print("No benchmarks found. Adding sample benchmarks...")
try:
# Make sure the database path is clear
print(f"Database path: {db.db_path}")
# Import and call the function directly
num_added = add_sample_benchmarks()
print(f"Added {num_added} sample benchmarks.")
except Exception as e:
print(f"Error adding sample benchmarks: {str(e)}")
# Try direct DB insertion as fallback
try:
print("Attempting direct benchmark insertion...")
db.add_benchmark(
name="MMLU (Massive Multitask Language Understanding)",
dataset_id="cais/mmlu",
description="Tests knowledge across 57 subjects"
)
print("Added fallback benchmark.")
except Exception as inner_e:
print(f"Fallback insertion failed: {str(inner_e)}")
else:
print(f"Found {len(benchmarks)} existing benchmarks.")
# Custom CSS with theme awareness
css = """
/* Theme-adaptive colored info box */
.info-text {
background-color: rgba(53, 130, 220, 0.1);
padding: 12px;
border-radius: 8px;
border-left: 4px solid #3498db;
margin: 12px 0;
}
/* High-contrast text for elements - works in light and dark themes */
.info-text, .header, .footer, .tab-content,
button, input, textarea, select, option,
.gradio-container *, .markdown-text {
color: var(--text-color, inherit) !important;
}
/* Container styling */
.container {
max-width: 1200px;
margin: 0 auto;
}
/* Header styling */
.header {
text-align: center;
margin-bottom: 20px;
font-weight: bold;
font-size: 24px;
}
/* Footer styling */
.footer {
text-align: center;
margin-top: 40px;
padding: 20px;
border-top: 1px solid var(--border-color-primary, #eee);
}
/* Login section styling */
.login-section {
padding: 10px;
margin-bottom: 15px;
border-radius: 8px;
background-color: rgba(250, 250, 250, 0.1);
text-align: center;
}
/* Token input styling */
.token-input {
margin: 10px 0;
padding: 8px;
border-radius: 4px;
border: 1px solid #ccc;
width: 100%;
}
/* Force high contrast on specific input areas */
input[type="text"], input[type="password"], textarea {
background-color: var(--background-fill-primary) !important;
color: var(--body-text-color) !important;
}
/* Force text visibility in multiple contexts */
.gradio-markdown p, .gradio-markdown h1, .gradio-markdown h2,
.gradio-markdown h3, .gradio-markdown h4, .gradio-markdown li {
color: var(--body-text-color) !important;
}
/* Fix dark mode text visibility */
@media (prefers-color-scheme: dark) {
input, textarea, select {
color: #ffffff !important;
}
::placeholder {
color: rgba(255, 255, 255, 0.5) !important;
}
}
"""
# Create token input UI
def create_token_input_ui():
with gr.Row():
with gr.Column():
gr.Markdown("### HuggingFace Token Authentication")
gr.Markdown("""
Enter your HuggingFace tokens to use this application.
You can find your tokens in your [HuggingFace settings](https://huggingface.co/settings/tokens).
- **Read Token**: Required for accessing models and datasets
- **Write Token**: Required for submitting evaluation results
Your tokens are stored only in your browser's local storage and are not saved on the server.
""")
read_token = gr.Textbox(
label="Read Token",
placeholder="Enter your HuggingFace read token",
type="password"
)
write_token = gr.Textbox(
label="Write Token",
placeholder="Enter your HuggingFace write token",
type="password"
)
save_button = gr.Button("Save Tokens")
clear_button = gr.Button("Clear Tokens")
token_status = gr.Markdown("Not authenticated")
# Hidden field to store the token status
token_state = gr.State(None)
# JavaScript to handle token storage
token_js = """
<script>
// Function to save tokens to localStorage
function saveTokens() {
const readToken = document.querySelector('input[placeholder="Enter your HuggingFace read token"]').value;
const writeToken = document.querySelector('input[placeholder="Enter your HuggingFace write token"]').value;
if (readToken && writeToken) {
localStorage.setItem("hf_read_token", readToken);
localStorage.setItem("hf_write_token", writeToken);
// Set token in cookie for server-side access
document.cookie = "hf_token=" + readToken + "; path=/; SameSite=Strict";
// Update status
const statusElement = document.querySelector('div[data-testid="markdown"] p');
if (statusElement) {
statusElement.textContent = "Authenticated with tokens";
statusElement.style.color = "green";
}
// Reload page to apply tokens
setTimeout(() => window.location.reload(), 1000);
} else {
alert("Please enter both read and write tokens");
}
}
// Function to clear tokens from localStorage
function clearTokens() {
localStorage.removeItem("hf_read_token");
localStorage.removeItem("hf_write_token");
// Clear token cookie
document.cookie = "hf_token=; path=/; max-age=0; SameSite=Strict";
// Update status
const statusElement = document.querySelector('div[data-testid="markdown"] p');
if (statusElement) {
statusElement.textContent = "Not authenticated";
statusElement.style.color = "red";
}
// Clear input fields
document.querySelector('input[placeholder="Enter your HuggingFace read token"]').value = "";
document.querySelector('input[placeholder="Enter your HuggingFace write token"]').value = "";
// Reload page to apply changes
setTimeout(() => window.location.reload(), 1000);
}
// Function to load tokens from localStorage
function loadTokens() {
const readToken = localStorage.getItem("hf_read_token");
const writeToken = localStorage.getItem("hf_write_token");
if (readToken && writeToken) {
document.querySelector('input[placeholder="Enter your HuggingFace read token"]').value = readToken;
document.querySelector('input[placeholder="Enter your HuggingFace write token"]').value = writeToken;
// Update status
const statusElement = document.querySelector('div[data-testid="markdown"] p');
if (statusElement) {
statusElement.textContent = "Authenticated with tokens";
statusElement.style.color = "green";
}
// Set token in cookie for server-side access if not already set
if (!document.cookie.includes("hf_token=")) {
document.cookie = "hf_token=" + readToken + "; path=/; SameSite=Strict";
}
}
}
// Add event listeners once DOM is loaded
document.addEventListener("DOMContentLoaded", function() {
// Load tokens from localStorage
loadTokens();
// Add event listeners to buttons
const saveButton = document.querySelector('button:nth-of-type(1)');
const clearButton = document.querySelector('button:nth-of-type(2)');
if (saveButton) {
saveButton.addEventListener("click", saveTokens);
}
if (clearButton) {
clearButton.addEventListener("click", clearTokens);
}
});
</script>
"""
return read_token, write_token, save_button, clear_button, token_status, token_state, token_js
# Simple manual authentication check
def check_user(request: gr.Request):
if request:
# Check for token in cookies
token = request.cookies.get("hf_token")
if token:
try:
# Validate token with HuggingFace
user_info = auth_manager.hf_api.whoami(token=token)
if user_info:
username = user_info.get("name", "")
print(f"User authenticated via token: {username}")
# Check if user exists in our database, create if not
user = db.get_user_by_username(username)
if not user:
# Create user if they don't exist
print(f"Creating new user: {username}")
is_admin = (username == "Quazim0t0")
db.add_user(username, username, is_admin)
user = db.get_user_by_username(username)
return username
except Exception as e:
print(f"Token validation error: {e}")
return None
# Start evaluation queue worker
def start_queue_worker():
# Wait a moment to ensure app is initialized
time.sleep(2)
try:
print("Starting evaluation queue worker...")
evaluation_queue.start_worker()
except Exception as e:
print(f"Error starting queue worker: {e}")
# Create Gradio app
with gr.Blocks(css=css, title="Dynamic Highscores") as app:
# State to track user
user_state = gr.State(None)
# Token input UI
read_token, write_token, save_button, clear_button, token_status, token_state, token_js = create_token_input_ui()
# Add the token handling JavaScript
gr.HTML(token_js)
gr.Markdown("# π Dynamic Highscores", elem_classes=["header"])
gr.Markdown("""
Welcome to Dynamic Highscores - a community benchmark platform for evaluating and comparing language models.
- **Add your own benchmarks** from HuggingFace datasets
- **Submit your models** for CPU-only evaluation
- **Compare performance** across different models and benchmarks
- **Filter results** by model type (Merge, Agent, Reasoning, Coding, etc.)
""", elem_classes=["info-text"])
# Main tabs
with gr.Tabs() as tabs:
with gr.TabItem("π Leaderboard", id=0):
leaderboard_ui = create_leaderboard_ui(leaderboard, db)
with gr.TabItem("π Submit Model", id=1):
submission_ui = create_model_submission_ui(evaluation_queue, auth_manager, db)
with gr.TabItem("π Benchmarks", id=2):
benchmark_ui = create_benchmark_selection_ui(benchmark_selector, auth_manager)
with gr.TabItem("π Community Framework", id=3):
# Create a simple placeholder for the Community Framework tab
gr.Markdown("""
# π Dynamic Highscores Community Framework
## About Dynamic Highscores
Dynamic Highscores is an open-source community benchmark system for evaluating language models on any dataset. This project was created to fill the gap left by the retirement of HuggingFace's "Open LLM Leaderboards" which were discontinued due to outdated benchmarks.
### Key Features
- **Flexible Benchmarking**: Test models against any HuggingFace dataset, not just predefined benchmarks
- **Community-Driven**: Anyone can add new benchmarks and submit models for evaluation
- **Modern Evaluation**: Focus on contemporary benchmarks that better reflect current model capabilities
- **CPU-Only Evaluation**: Ensures fair comparisons across different models
- **Daily Submission Limits**: Prevents system abuse (one benchmark per day per user)
- **Model Tagging**: Categorize models as Merge, Agent, Reasoning, Coding, etc.
- **Unified Leaderboard**: View all models with filtering capabilities by tags
### Why This Project Matters
When HuggingFace retired their "Open LLM Leaderboards," the community lost a valuable resource for comparing model performance. The benchmarks used had become outdated and didn't reflect the rapid advances in language model capabilities.
Dynamic Highscores addresses this issue by allowing users to select from any benchmark on HuggingFace, including the most recent and relevant datasets. This ensures that models are evaluated on tasks that matter for current applications.
## Model Configuration System (Coming Soon)
We're working on a modular system for model configurations that will allow users to:
- Create and apply predefined configurations for different model types
- Define parameters such as Temperature, Top-K, Min-P, Top-P, and Repetition Penalty
- Share optimal configurations with the community
### Example Configuration (Gemma)
```
Temperature: 1.0
Top_K: 64
Min_P: 0.01
Top_P: 0.95
Repetition Penalty: 1.0
```
## Contributing to the Project
We welcome contributions from the community! If you'd like to improve Dynamic Highscores, here are some ways to get involved:
- **Add New Features**: Enhance the platform with additional functionality
- **Improve Evaluation Methods**: Help make model evaluations more accurate and efficient
- **Fix Bugs**: Address issues in the codebase
- **Enhance Documentation**: Make the project more accessible to new users
- **Add Model Configurations**: Contribute optimal configurations for different model types
To contribute, fork the repository, make your changes, and submit a pull request. We appreciate all contributions, big or small!
""")
gr.Markdown("""
### About Dynamic Highscores
This platform allows users to select benchmarks from HuggingFace datasets and evaluate models against them.
Each user can submit one benchmark per day (admin users are exempt from this limit).
All evaluations run on CPU only to ensure fair comparisons.
Created by Quazim0t0
""", elem_classes=["footer"])
# Check login on page load
app.load(
fn=check_user,
inputs=[],
outputs=[user_state]
)
# Launch the app
if __name__ == "__main__":
# Start queue worker in a separate thread
queue_thread = threading.Thread(target=start_queue_worker)
queue_thread.daemon = True
queue_thread.start()
# Launch the app
app.launch()
|