import gradio as gr import time from smolagents import CodeAgent, HfApiModel # Initialize the AI agent agent = CodeAgent( tools=[], model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), ) def analyze_content(file_paths): """Process files and generate report with status updates""" status = "Starting analysis..." yield "", status full_content = [] for path in file_paths: status = f"Reading {path.split('/')[-1]}..." yield "", status try: with open(path, 'r', encoding='utf-8') as f: content = f.read() full_content.append(f"## {path.split('/')[-1]}\n{content}\n") except Exception as e: yield f"Error processing {path}: {str(e)}", "" return status = "Analyzing content with AI..." yield "", status report = agent.run(f""" Analyze these documents: {"".join(full_content)[:10000]} Create report with: 1. Key insights 2. Important patterns 3. Actionable recommendations Use markdown formatting with headers. """) status = "Analysis complete!" yield report, status with gr.Blocks() as demo: gr.Markdown("# Document Analysis System") with gr.Row(): file_input = gr.File( file_count="multiple", file_types=[".txt"], label="Upload Documents" ) process_btn = gr.Button("Generate Report", variant="primary") report_output = gr.Markdown(label="Analysis Report") status = gr.Textbox(label="Processing Status", interactive=False) process_btn.click( fn=analyze_content, inputs=file_input, outputs=[report_output, status], show_progress="hidden" ) if __name__ == "__main__": demo.launch( server_name="0.0.0.0", server_port=7860, share=True )