Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,185 +1,78 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
from sqlalchemy import text
|
4 |
-
from smolagents import CodeAgent, HfApiModel
|
5 |
import pandas as pd
|
6 |
from io import StringIO
|
7 |
-
import
|
8 |
-
from datetime import datetime
|
9 |
-
from database import (
|
10 |
-
engine,
|
11 |
-
create_dynamic_table,
|
12 |
-
clear_database,
|
13 |
-
insert_rows_into_table
|
14 |
-
)
|
15 |
|
|
|
16 |
agent = CodeAgent(
|
17 |
tools=[],
|
18 |
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
|
19 |
)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def analyze_content(full_text):
|
22 |
-
"""
|
23 |
analysis_prompt = f"""
|
24 |
-
Analyze this text and
|
25 |
-
{full_text[:
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
- Legal
|
33 |
-
- Literary
|
34 |
|
35 |
-
|
36 |
-
{{
|
37 |
-
"domain": "primary domain",
|
38 |
-
"keywords": ["list", "of", "key", "terms"],
|
39 |
-
"report_type": "business|historical|scientific|technical|legal|literary"
|
40 |
-
}}
|
41 |
"""
|
42 |
-
return agent.run(analysis_prompt
|
43 |
|
44 |
-
def
|
45 |
-
"""
|
46 |
-
|
47 |
-
Create a comprehensive {domain} report from these documents:
|
48 |
-
Files: {', '.join(file_names)}
|
49 |
-
|
50 |
-
Content:
|
51 |
-
{full_text[:20000]} # First 20k chars for report
|
52 |
-
|
53 |
-
Report structure:
|
54 |
-
1. Executive Summary
|
55 |
-
2. Key Findings/Analysis
|
56 |
-
3. Important Metrics/Statistics (if applicable)
|
57 |
-
4. Timeline of Events (historical) or Financial Overview (business)
|
58 |
-
5. Conclusions/Recommendations
|
59 |
-
|
60 |
-
Include markdown formatting with headings, bullet points, and tables where appropriate.
|
61 |
-
"""
|
62 |
-
return agent.run(report_prompt)
|
63 |
-
|
64 |
-
def process_files(file_paths):
|
65 |
-
"""Process multiple files and generate report"""
|
66 |
full_text = ""
|
67 |
-
file_names = []
|
68 |
-
structured_data = []
|
69 |
-
|
70 |
-
for file_path in file_paths:
|
71 |
-
try:
|
72 |
-
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
73 |
-
content = f.read()
|
74 |
-
full_text += f"\n\n--- {os.path.basename(file_path)} ---\n{content}"
|
75 |
-
file_names.append(os.path.basename(file_path))
|
76 |
-
|
77 |
-
# Structure detection for tables
|
78 |
-
structure_prompt = f"Convert to CSV:\n{content}\nReturn ONLY CSV:"
|
79 |
-
csv_output = agent.run(structure_prompt)
|
80 |
-
df = pd.read_csv(StringIO(csv_output), dtype=str).dropna(how='all')
|
81 |
-
structured_data.append(df)
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
print(f"Error processing {file_path}: {str(e)}")
|
85 |
-
|
86 |
-
# Domain analysis
|
87 |
-
domain_info = analyze_content(full_text)
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
|
95 |
-
return
|
96 |
-
|
97 |
-
def handle_upload(files):
|
98 |
-
"""Handle multiple file uploads"""
|
99 |
-
if not files:
|
100 |
-
return [gr.update()]*6 + [gr.update(visible=False)]
|
101 |
-
|
102 |
-
domain_info, report, df = process_files(files)
|
103 |
-
|
104 |
-
outputs = [
|
105 |
-
gr.Markdown(value=f"**Document Type:** {domain_info['domain']}"),
|
106 |
-
gr.Markdown(value=f"**Key Themes:** {', '.join(domain_info['keywords'][:5])}"),
|
107 |
-
gr.Dataframe(value=df.head(10) if not df.empty else None),
|
108 |
-
gr.Markdown(value=report),
|
109 |
-
gr.update(visible=True),
|
110 |
-
gr.update(visible=True),
|
111 |
-
gr.update(visible=not df.empty)
|
112 |
-
]
|
113 |
-
|
114 |
-
return outputs
|
115 |
-
|
116 |
-
def download_report(report_type):
|
117 |
-
"""Generate downloadable reports"""
|
118 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
119 |
-
filename = f"{report_type}_report_{timestamp}"
|
120 |
-
|
121 |
-
temp_dir = tempfile.gettempdir()
|
122 |
-
formats = {
|
123 |
-
'pdf': f"{filename}.pdf",
|
124 |
-
'docx': f"{filename}.docx",
|
125 |
-
'csv': f"{filename}.csv"
|
126 |
-
}
|
127 |
-
|
128 |
-
# Generate files (implementation depends on your PDF/DOCX libraries)
|
129 |
-
# Add your preferred reporting libraries here
|
130 |
-
|
131 |
-
return [os.path.join(temp_dir, f) for f in formats.values()]
|
132 |
|
133 |
with gr.Blocks() as demo:
|
134 |
-
gr.Markdown("#
|
135 |
|
136 |
with gr.Row():
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
)
|
144 |
-
process_btn = gr.Button("Analyze Documents", variant="primary")
|
145 |
-
|
146 |
-
with gr.Group(visible=False) as meta_group:
|
147 |
-
domain_display = gr.Markdown()
|
148 |
-
keywords_display = gr.Markdown()
|
149 |
-
|
150 |
-
with gr.Column(scale=2):
|
151 |
-
with gr.Tabs():
|
152 |
-
with gr.TabItem("Structured Data"):
|
153 |
-
data_table = gr.Dataframe(label="Combined Data Preview", interactive=False)
|
154 |
-
|
155 |
-
with gr.TabItem("Analysis Report"):
|
156 |
-
report_display = gr.Markdown()
|
157 |
-
|
158 |
-
with gr.Group(visible=False) as download_group:
|
159 |
-
gr.Markdown("### Download Options")
|
160 |
-
with gr.Row():
|
161 |
-
pdf_btn = gr.DownloadButton("PDF Report")
|
162 |
-
docx_btn = gr.DownloadButton("Word Report")
|
163 |
-
csv_btn = gr.DownloadButton("CSV Data")
|
164 |
|
165 |
-
|
166 |
-
|
167 |
inputs=file_input,
|
168 |
-
outputs=[
|
169 |
-
domain_display,
|
170 |
-
keywords_display,
|
171 |
-
data_table,
|
172 |
-
report_display,
|
173 |
-
meta_group,
|
174 |
-
download_group,
|
175 |
-
csv_btn
|
176 |
-
]
|
177 |
)
|
178 |
-
|
179 |
-
# Connect download buttons (implement actual file generation)
|
180 |
-
# pdf_btn.click(fn=lambda: download_report("pdf"), outputs=pdf_btn)
|
181 |
-
# docx_btn.click(fn=lambda: download_report("docx"), outputs=docx_btn)
|
182 |
-
# csv_btn.click(fn=lambda: download_report("csv"), outputs=csv_btn)
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import pandas as pd
|
3 |
from io import StringIO
|
4 |
+
from smolagents import CodeAgent, HfApiModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# Initialize the AI agent
|
7 |
agent = CodeAgent(
|
8 |
tools=[],
|
9 |
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
|
10 |
)
|
11 |
|
12 |
+
def process_text(content):
|
13 |
+
"""Handle text processing without database dependency"""
|
14 |
+
# Get CSV conversion from AI
|
15 |
+
csv_output = agent.run(f"Convert to CSV:\n{content}\nReturn ONLY valid CSV:")
|
16 |
+
|
17 |
+
# Process CSV data
|
18 |
+
try:
|
19 |
+
df = pd.read_csv(StringIO(csv_output), keep_default_na=False)
|
20 |
+
return df.head(10), csv_output
|
21 |
+
except Exception as e:
|
22 |
+
return pd.DataFrame(), f"Error processing data: {str(e)}"
|
23 |
+
|
24 |
def analyze_content(full_text):
|
25 |
+
"""Analyze text content for reporting"""
|
26 |
analysis_prompt = f"""
|
27 |
+
Analyze this text and generate a structured report:
|
28 |
+
{full_text[:5000]}
|
29 |
|
30 |
+
Include:
|
31 |
+
1. Key themes/topics
|
32 |
+
2. Important entities
|
33 |
+
3. Summary statistics
|
34 |
+
4. Recommendations/insights
|
|
|
|
|
35 |
|
36 |
+
Use markdown formatting with headers.
|
|
|
|
|
|
|
|
|
|
|
37 |
"""
|
38 |
+
return agent.run(analysis_prompt)
|
39 |
|
40 |
+
def handle_upload(*files):
|
41 |
+
"""Process uploaded files"""
|
42 |
+
all_dfs = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
full_text = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
for file in files:
|
46 |
+
content = file.read().decode()
|
47 |
+
df, _ = process_text(content)
|
48 |
+
all_dfs.append(df)
|
49 |
+
full_text += f"\n\n--- {file.name} ---\n{content}"
|
50 |
|
51 |
+
combined_df = pd.concat(all_dfs, ignore_index=True) if all_dfs else pd.DataFrame()
|
52 |
+
report = analyze_content(full_text) if full_text else "No content to analyze"
|
53 |
|
54 |
+
return combined_df, report
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("# Document Analysis System")
|
58 |
|
59 |
with gr.Row():
|
60 |
+
file_input = gr.File(file_count="multiple", file_types=[".txt"])
|
61 |
+
upload_btn = gr.Button("Process Files", variant="primary")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
data_output = gr.Dataframe(label="Structured Data Preview")
|
65 |
+
report_output = gr.Markdown(label="Analysis Report")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
upload_btn.click(
|
68 |
+
handle_upload,
|
69 |
inputs=file_input,
|
70 |
+
outputs=[data_output, report_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
)
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
+
demo.launch(
|
75 |
+
server_name="0.0.0.0",
|
76 |
+
server_port=7860,
|
77 |
+
show_error=True
|
78 |
+
)
|