Spaces:
Sleeping
Sleeping
Update database.py
Browse files- database.py +74 -42
database.py
CHANGED
@@ -1,55 +1,87 @@
|
|
1 |
-
from sqlalchemy import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
#
|
4 |
engine = create_engine("sqlite:///database.db")
|
5 |
metadata_obj = MetaData()
|
6 |
|
7 |
-
|
8 |
-
def get_existing_tables():
|
9 |
"""
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
Returns:
|
13 |
-
|
14 |
"""
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
Column("age", Integer),
|
29 |
-
Column("balance", Float)
|
30 |
-
)
|
31 |
-
metadata_obj.create_all(engine)
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
def initialize_database():
|
43 |
"""
|
44 |
-
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
if not tables:
|
49 |
-
print("No tables found. Creating a placeholder table...")
|
50 |
-
create_placeholder_table()
|
51 |
-
else:
|
52 |
-
print(f"Database initialized with tables: {tables}")
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sqlalchemy import (
|
2 |
+
create_engine,
|
3 |
+
MetaData,
|
4 |
+
Table,
|
5 |
+
Column,
|
6 |
+
String,
|
7 |
+
Integer,
|
8 |
+
Float,
|
9 |
+
insert,
|
10 |
+
text,
|
11 |
+
)
|
12 |
|
13 |
+
# Use a persistent SQLite database file
|
14 |
engine = create_engine("sqlite:///database.db")
|
15 |
metadata_obj = MetaData()
|
16 |
|
17 |
+
def create_dynamic_table(df):
|
|
|
18 |
"""
|
19 |
+
Creates a table dynamically based on DataFrame schema.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
df: pandas DataFrame containing the data
|
23 |
+
|
24 |
Returns:
|
25 |
+
SQLAlchemy Table object
|
26 |
"""
|
27 |
+
# Drop existing table if it exists
|
28 |
+
if 'data_table' in metadata_obj.tables:
|
29 |
+
metadata_obj.remove(metadata_obj.tables['data_table'])
|
30 |
+
|
31 |
+
# Create columns based on DataFrame dtypes
|
32 |
+
columns = []
|
33 |
+
for col_name, dtype in df.dtypes.items():
|
34 |
+
if 'int' in str(dtype):
|
35 |
+
col_type = Integer
|
36 |
+
elif 'float' in str(dtype):
|
37 |
+
col_type = Float
|
38 |
+
else:
|
39 |
+
col_type = String(255) # Using a generous length for string columns
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# First column becomes primary key
|
42 |
+
if len(columns) == 0:
|
43 |
+
columns.append(Column(col_name, col_type, primary_key=True))
|
44 |
+
else:
|
45 |
+
columns.append(Column(col_name, col_type))
|
46 |
+
|
47 |
+
# Create new table
|
48 |
+
table = Table('data_table', metadata_obj, *columns)
|
49 |
+
|
50 |
+
# Create table in database
|
51 |
+
metadata_obj.create_all(engine, tables=[table])
|
52 |
+
|
53 |
+
return table
|
54 |
|
55 |
+
def clear_database():
|
|
|
56 |
"""
|
57 |
+
Removes all tables from the database.
|
58 |
"""
|
59 |
+
metadata_obj.drop_all(engine)
|
60 |
+
metadata_obj.clear()
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def insert_rows_into_table(rows, table):
|
63 |
+
"""
|
64 |
+
Inserts rows into the specified table.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
rows: List of dictionaries containing the row data
|
68 |
+
table: SQLAlchemy Table object
|
69 |
+
"""
|
70 |
+
with engine.begin() as connection:
|
71 |
+
connection.execute(insert(table), rows)
|
72 |
|
73 |
+
def get_table_schema():
|
74 |
+
"""
|
75 |
+
Returns the current table schema as a string.
|
76 |
+
"""
|
77 |
+
if 'data_table' not in metadata_obj.tables:
|
78 |
+
return None
|
79 |
+
|
80 |
+
table = metadata_obj.tables['data_table']
|
81 |
+
schema = []
|
82 |
+
for column in table.columns:
|
83 |
+
col_type = str(column.type).upper()
|
84 |
+
is_primary = "primary key" if column.primary_key else ""
|
85 |
+
schema.append(f"- {column.name} ({col_type}) {is_primary}".strip())
|
86 |
+
|
87 |
+
return "\n".join(schema)
|