File size: 6,493 Bytes
6a0ec6a
 
91561ce
6a0ec6a
91561ce
1767e22
91561ce
 
 
 
 
 
 
 
 
9002697
91561ce
28200f6
5a55ea7
91561ce
 
 
 
e566b0f
91561ce
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55ea7
91561ce
28200f6
91561ce
28200f6
91561ce
28200f6
91561ce
 
 
 
 
 
 
 
 
 
 
28200f6
91561ce
 
5a55ea7
91561ce
 
28200f6
91561ce
bf0142b
 
 
 
 
fed63c4
28200f6
20e319d
 
91561ce
20e319d
5a55ea7
91561ce
5a55ea7
91561ce
 
20e319d
91561ce
28200f6
91561ce
 
28200f6
e566b0f
 
 
 
 
91561ce
 
fed63c4
28200f6
91561ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a55ea7
91561ce
 
 
 
 
 
fed63c4
 
 
91561ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed63c4
 
 
 
 
 
 
5a55ea7
fed63c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0ec6a
 
e566b0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import spaces
import pandas as pd
from database import (
    engine,
    create_dynamic_table,
    clear_database,
    insert_rows_into_table,
    get_table_schema
)

def process_uploaded_file(file):
    """
    Process the uploaded CSV file and load it into the database.
    """
    try:
        if file is None:
            return False, "Please upload a file."
            
        # Read the CSV file
        df = pd.read_csv(file)
        
        if len(df.columns) == 0:
            return False, "Error: File contains no columns"
            
        # Clear existing database and create new table
        clear_database()
        table = create_dynamic_table(df)
        
        # Convert DataFrame to list of dictionaries and insert
        records = df.to_dict('records')
        insert_rows_into_table(records, table)
        
        return True, "File successfully loaded! Proceeding to query interface..."
        
    except Exception as e:
        return False, f"Error processing file: {str(e)}"

def get_data_table():
    """
    Fetches all data from the current table and returns it as a Pandas DataFrame.
    """
    try:
        with engine.connect() as con:
            result = con.execute(text("SELECT * FROM data_table"))
            rows = result.fetchall()
            
            if not rows:
                return pd.DataFrame()
                
            columns = result.keys()
            df = pd.DataFrame(rows, columns=columns)
            return df

    except Exception as e:
        return pd.DataFrame({"Error": [str(e)]})

@tool
def sql_engine(query: str) -> str:
    """
    Executes an SQL query and returns formatted results.

    Args:
        query: The SQL query string to execute on the database. Must be a valid SELECT query.

    Returns:
        str: The formatted query results as a string.
    """
    try:
        with engine.connect() as con:
            rows = con.execute(text(query)).fetchall()

        if not rows:
            return "No results found."

        if len(rows) == 1 and len(rows[0]) == 1:
            return str(rows[0][0])

        return "\n".join([", ".join(map(str, row)) for row in rows])

    except Exception as e:
        return f"Error: {str(e)}"

agent = CodeAgent(
    tools=[sql_engine],
    model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)

def query_sql(user_query: str) -> str:
    """
    Converts natural language input to an SQL query using CodeAgent.
    """
    schema = get_table_schema()
    if not schema:
        return "Error: No data table exists. Please upload a file first."
        
    schema_info = (
        "The database has a table named 'data_table' with the following schema:\n"
        f"{schema}\n"
        "Generate a valid SQL SELECT query using ONLY these column names.\n"
        "DO NOT explain your reasoning, and DO NOT return anything other than the SQL query itself."
    )

    generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")

    if not isinstance(generated_sql, str):
        return f"{generated_sql}"

    if not generated_sql.strip().lower().startswith(("select", "show", "pragma")):
        return "Error: Only SELECT queries are allowed."

    result = sql_engine(generated_sql)
    
    try:
        float_result = float(result)
        return f"{float_result:.2f}"
    except ValueError:
        return result

with gr.Blocks() as demo:
    # First create both interfaces
    with gr.Blocks() as query_interface:
        gr.Markdown("""
        ## Data Query Interface
        
        Enter your questions about the data in natural language.
        The AI will convert your questions into SQL queries.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                user_input = gr.Textbox(label="Ask a question about the data")
                query_output = gr.Textbox(label="Result")
            
            with gr.Column(scale=2):
                gr.Markdown("### Current Data")
                data_table = gr.Dataframe(
                    value=get_data_table(),
                    label="Data Table",
                    interactive=False
                )
        
        schema_display = gr.Markdown(value="Loading schema...")
        
        def update_schema():
            schema = get_table_schema()
            if schema:
                return f"### Current Schema:\n```\n{schema}\n```"
            return "No data loaded"
        
        user_input.change(
            fn=query_sql,
            inputs=[user_input],
            outputs=[query_output]
        )
        
        with gr.Row():
            refresh_table_btn = gr.Button("Refresh Table")
            refresh_schema_btn = gr.Button("Refresh Schema")
            
        refresh_table_btn.click(
            fn=get_data_table,
            outputs=[data_table]
        )
        
        refresh_schema_btn.click(
            fn=update_schema,
            outputs=[schema_display]
        )
        
        query_interface.load(
            fn=update_schema,
            outputs=[schema_display]
        )
    
    # Set query interface initially invisible
    query_interface.visible = False
    
    # Create upload interface
    with gr.Blocks() as upload_interface:
        gr.Markdown("""
        # Data Query Interface

        Upload your CSV file to begin.
        
        ### Requirements:
        - File must be in CSV format
        - First column will be used as the primary key
        - All columns will be automatically typed based on their content
        """)
        
        file_input = gr.File(
            label="Upload CSV File",
            file_types=[".csv"],
            type="filepath"
        )
        status = gr.Textbox(label="Status", interactive=False)
        
        def handle_upload(file):
            success, message = process_uploaded_file(file)
            if success:
                return message, gr.Blocks.update(visible=False), gr.Blocks.update(visible=True)
            return message, gr.Blocks.update(visible=True), gr.Blocks.update(visible=False)
        
        file_input.upload(
            fn=handle_upload,
            inputs=[file_input],
            outputs=[status, upload_interface, query_interface]
        )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)