VoiceEmotion / app.py
Quanchan123abc's picture
Create app.py
888d183 verified
raw
history blame contribute delete
992 Bytes
import gradio as gr
import torch
import librosa
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
# Load the model and feature extractor
model_name = "r-f/wav2vec-english-speech-emotion-recognition"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
# Define the emotion labels
labels = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
def predict_emotion(audio):
# Load and preprocess the audio
audio, rate = librosa.load(audio, sr=16000)
inputs = feature_extractor(audio, sampling_rate=rate, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = torch.argmax(logits).item()
return labels[predicted_class_id]
# Create the Gradio interface
interface = gr.Interface(fn=predict_emotion, inputs=gr.Audio(type="filepath"), outputs="text")
interface.launch()