import inspect from typing import List, Optional, Tuple, Union import torch from diffusers.models import UNet2DModel, VQModel from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput import copy class LDMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: vae ([`VQModel`]): Vector-quantized (VQ) Model to encode and decode images to and from latent representations. unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents. """ def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16): super().__init__() self.register_modules(vae=vae, unet=unet, scheduler=scheduler) self.torch_dtype = torch_dtype @torch.no_grad() def __call__( self, batch_size: int = 8, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, eta: float = 0.0, num_inference_steps: int = 1000, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" Args: batch_size (`int`, *optional*, defaults to 1): Number of images to generate. generator (`torch.Generator`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ if not isinstance(self.unet.config.sample_size,tuple): self.unet.config.sample_size = (self.unet.config.sample_size,self.unet.config.sample_size) latents = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), generator=generator, ) latents = latents.to(self.device).type(self.torch_dtype) # scale the initial noise by the standard deviation required by the scheduler (need to check) latents = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(num_inference_steps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta for t in self.progress_bar(self.scheduler.timesteps): latent_model_input = self.scheduler.scale_model_input(latents, t) # predict the noise residual noise_prediction = self.unet(latent_model_input, t).sample # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample # decode the image latents with the VAE latents /= self.vae.config.scaling_factor#(0.18215) image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) class SDMLDMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: vae ([`VQModel`]): Vector-quantized (VQ) Model to encode and decode images to and from latent representations. unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents. """ def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, resolution=512, resolution_type="city"): super().__init__() self.register_modules(vae=vae, unet=unet, scheduler=scheduler) self.torch_dtype = torch_dtype self.resolution = resolution self.resolution_type = resolution_type @torch.no_grad() def __call__( self, segmap = None, batch_size: int = 8, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, eta: float = 0.0, num_inference_steps: int = 1000, output_type: Optional[str] = "pil", return_dict: bool = True, every_step_save: int = None, s: int = 1, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" Args: batch_size (`int`, *optional*, defaults to 1): Number of images to generate. generator (`torch.Generator`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # self.unet.config.sample_size = (64, 64) # (135,180) # self.unet.config.sample_size = (135,180) if self.resolution_type == "crack": self.unet.config.sample_size = (64,64) elif self.resolution_type == "crack_256": self.unet.config.sample_size = (256,256) else: sc = 1080 // self.resolution latent_size = (self.resolution // 4, 1440 // (sc*4)) self.unet.config.sample_size = latent_size # if not isinstance(self.unet.config.sample_size, tuple): self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size) if segmap is None: print("Didn't inpute any segmap, use the empty as the input") segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]) segmap = segmap.to(self.device).type(self.torch_dtype) latents = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), generator=generator, ) latents = latents.to(self.device).type(self.torch_dtype) # scale the initial noise by the standard deviation required by the scheduler (need to check) latents = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(num_inference_steps=num_inference_steps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta step_latent = [] learn_sigma = True if hasattr(self.scheduler, "variance_type") else False for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): latent_model_input = self.scheduler.scale_model_input(latents, t) # predict the noise residual noise_prediction = self.unet(latent_model_input, segmap, t).sample # compute the previous noisy sample x_t -> x_t-1 if learn_sigma and "learn" in self.scheduler.variance_type: model_pred, var_pred = torch.split(noise_prediction, latents.shape[1], dim=1) else: model_pred = noise_prediction if s > 1.0: model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample if learn_sigma and "learn" in self.scheduler.variance_type: model_output_zero,_ = torch.split(model_output_zero, latents.shape[1], dim=1) model_pred = model_pred + s * (model_pred - model_output_zero) if learn_sigma and "learn" in self.scheduler.variance_type: recombined = torch.cat((model_pred, var_pred), dim=1) # when apply different scheduler, mean only !! if learn_sigma and "learn" in self.scheduler.variance_type: latents = self.scheduler.step(recombined, t, latents, **extra_kwargs).prev_sample else: latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample if every_step_save is not None: if (i+1) % every_step_save == 0: step_latent.append(copy.deepcopy(latents)) # decode the image latents with the VAE if every_step_save is not None: image = [] for i, l in enumerate(step_latent): l /= self.vae.config.scaling_factor # (0.18215) #latents /= 7.706491063029163 l = self.vae.decode(l, segmap) l = (l / 2 + 0.5).clamp(0, 1) l = l.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": l = self.numpy_to_pil(l) image.append(l) else: latents /= self.vae.config.scaling_factor#(0.18215) #latents /= 7.706491063029163 # image = self.vae.decode(latents, segmap).sample image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) class SDMPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: vae ([`VQModel`]): Vector-quantized (VQ) Model to encode and decode images to and from latent representations. unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents. """ def __init__(self, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, vae=None): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) self.torch_dtype = torch_dtype @torch.no_grad() def __call__( self, segmap = None, batch_size: int = 8, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, eta: float = 0.0, num_inference_steps: int = 1000, output_type: Optional[str] = "pil", return_dict: bool = True, s: int = 1, **kwargs, ) -> Union[Tuple, ImagePipelineOutput]: r""" Args: batch_size (`int`, *optional*, defaults to 1): Number of images to generate. generator (`torch.Generator`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ self.unet.config.sample_size = (270,360) if not isinstance(self.unet.config.sample_size, tuple): self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size) if segmap is None: print("Didn't inpute any segmap, use the empty as the input") segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]) segmap = segmap.to(self.device).type(self.torch_dtype) latents = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]), generator=generator, ) latents = latents.to(self.device).type(self.torch_dtype) # scale the initial noise by the standard deviation required by the scheduler (need to check) latents = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(num_inference_steps) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_kwargs = {} if accepts_eta: extra_kwargs["eta"] = eta for t in self.progress_bar(self.scheduler.timesteps): latent_model_input = self.scheduler.scale_model_input(latents, t) # predict the noise residual noise_prediction = self.unet(latent_model_input, segmap, t).sample #noise_prediction = noise_prediction[] if s > 1.0: model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample noise_prediction[:, :3] = model_output_zero[:, :3] + s * (noise_prediction[:, :3] - model_output_zero[:, :3]) #noise_prediction = noise_prediction[:, :3] # compute the previous noisy sample x_t -> x_t-1 #breakpoint() latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample # decode the image latents with the VAE # latents /= self.vae.config.scaling_factor#(0.18215) # image = self.vae.decode(latents).sample image = latents #image = (image + 1) / 2.0 image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)