QinLei086's picture
Upload 28 files
15acbf0 verified
from abc import abstractmethod
import math
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from .nn import (
SiLU,
checkpoint,
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
timestep_embedding,
convert_module_to_f16
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.models.modeling_utils import ModelMixin
from dataclasses import dataclass
@dataclass
class UNet2DOutput(BaseOutput):
"""
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Hidden states output. Output of last layer of model.
"""
sample: th.FloatTensor
class AttentionPool2d(nn.Module):
"""
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
"""
def __init__(
self,
spacial_dim: int,
embed_dim: int,
num_heads_channels: int,
output_dim: int = None,
):
super().__init__()
self.positional_embedding = nn.Parameter(
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
)
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
self.num_heads = embed_dim // num_heads_channels
self.attention = QKVAttention(self.num_heads)
def forward(self, x):
b, c, *_spatial = x.shape
x = x.reshape(b, c, -1) # NC(HW)
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
x = self.qkv_proj(x)
x = self.attention(x)
x = self.c_proj(x)
return x[:, :, 0]
class TimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
class CondTimestepBlock(nn.Module):
"""
Any module where forward() takes timestep embeddings as a second argument.
"""
@abstractmethod
def forward(self, x, cond, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
"""
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock, CondTimestepBlock):
def forward(self, x, cond, emb):
for layer in self:
if isinstance(layer, CondTimestepBlock):
x = layer(x, cond, emb)
elif isinstance(layer, TimestepBlock):
x = layer(x, emb)
else:
x = layer(x)
return x
"""
class TimestepEmbedSequential(nn.Sequential, TimestepBlock, CondTimestepBlock):
def forward(self, x, cond, emb):
outputs_list = [] # 创建一个空列表来存储第二个输出
for layer in self:
if isinstance(layer, CondTimestepBlock):
# 调用layer并检查输出是否为一个元组
result = layer(x, cond, emb)
if isinstance(result, tuple) and len(result) == 2:
x, additional_output = result
outputs_list.append(additional_output) # 将第二个输出添加到列表
else:
x = result
elif isinstance(layer, TimestepBlock):
x = layer(x, emb)
else:
x = layer(x)
if outputs_list == []:
return x
else:
return x, outputs_list # 返回最终的x和所有附加输出的列表
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
)
else:
x = F.interpolate(x, scale_factor=2, mode="nearest")
if self.use_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=1
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
return self.op(x)
class SPADEGroupNorm(nn.Module):
def __init__(self, norm_nc, label_nc, eps = 1e-5,debug = False):
super().__init__()
self.debug = debug
self.norm = nn.GroupNorm(32, norm_nc, affine=False) # 32/16
self.eps = eps
nhidden = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU(),
)
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
def forward(self, x, segmap):
# Part 1. generate parameter-free normalized activations
x = self.norm(x)
# Part 2. produce scaling and bias conditioned on semantic map
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
actv = self.mlp_shared(segmap)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
# apply scale and bias
if self.debug:
return x * (1 + gamma) + beta, (beta.detach().cpu(), gamma.detach().cpu())
else:
return x * (1 + gamma) + beta
class AdaIN(nn.Module):
def __init__(self, num_features):
super().__init__()
self.instance_norm = th.nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
def forward(self, x, alpha, gamma):
assert x.shape[:2] == alpha.shape[:2] == gamma.shape[:2]
norm = self.instance_norm(x)
return alpha * norm + gamma
class RESAILGroupNorm(nn.Module):
def __init__(self, norm_nc, label_nc, guidance_nc, eps = 1e-5):
super().__init__()
self.norm = nn.GroupNorm(32, norm_nc, affine=False) # 32/16
# SPADE
self.eps = eps
nhidden = 128
self.mask_mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU(),
)
self.mask_mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mask_mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
# Guidance
self.conv_s = th.nn.Conv2d(label_nc, nhidden * 2, 3, 2)
self.pool_s = th.nn.AdaptiveAvgPool2d(1)
self.conv_s2 = th.nn.Conv2d(nhidden * 2, nhidden * 2, 1, 1)
self.conv1 = th.nn.Conv2d(guidance_nc, nhidden, 3, 1, padding=1)
self.adaIn1 = AdaIN(norm_nc * 2)
self.relu1 = nn.ReLU()
self.conv2 = th.nn.Conv2d(nhidden, nhidden, 3, 1, padding=1)
self.adaIn2 = AdaIN(norm_nc * 2)
self.relu2 = nn.ReLU()
self.conv3 = th.nn.Conv2d(nhidden, nhidden, 3, 1, padding=1)
self.guidance_mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.guidance_mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.blending_gamma = nn.Parameter(th.zeros(1), requires_grad=True)
self.blending_beta = nn.Parameter(th.zeros(1), requires_grad=True)
self.norm_nc = norm_nc
def forward(self, x, segmap, guidance):
# Part 1. generate parameter-free normalized activations
x = self.norm(x)
# Part 2. produce scaling and bias conditioned on semantic map
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
mask_actv = self.mask_mlp_shared(segmap)
mask_gamma = self.mask_mlp_gamma(mask_actv)
mask_beta = self.mask_mlp_beta(mask_actv)
# Part 3. produce scaling and bias conditioned on feature guidance
guidance = F.interpolate(guidance, size=x.size()[2:], mode='bilinear')
f_s_1 = self.conv_s(segmap)
c1 = self.pool_s(f_s_1)
c2 = self.conv_s2(c1)
f1 = self.conv1(guidance)
f1 = self.adaIn1(f1, c1[:, : 128, ...], c1[:, 128:, ...])
f2 = self.relu1(f1)
f2 = self.conv2(f2)
f2 = self.adaIn2(f2, c2[:, : 128, ...], c2[:, 128:, ...])
f2 = self.relu2(f2)
guidance_actv = self.conv3(f2)
guidance_gamma = self.guidance_mlp_gamma(guidance_actv)
guidance_beta = self.guidance_mlp_beta(guidance_actv)
gamma_alpha = F.sigmoid(self.blending_gamma)
beta_alpha = F.sigmoid(self.blending_beta)
gamma_final = gamma_alpha * guidance_gamma + (1 - gamma_alpha) * mask_gamma
beta_final = beta_alpha * guidance_beta + (1 - beta_alpha) * mask_beta
out = x * (1 + gamma_final) + beta_final
# apply scale and bias
return out
class SPMGroupNorm(nn.Module):
def __init__(self, norm_nc, label_nc, feature_nc, eps = 1e-5):
super().__init__()
print("use SPM")
self.norm = nn.GroupNorm(32, norm_nc, affine=False) # 32/16
# SPADE
self.eps = eps
nhidden = 128
self.mask_mlp_shared = nn.Sequential(
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU(),
)
self.mask_mlp_gamma1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mask_mlp_beta1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mask_mlp_gamma2 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.mask_mlp_beta2 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
# Feature
self.feature_mlp_shared = nn.Sequential(
nn.Conv2d(feature_nc, nhidden, kernel_size=3, padding=1),
nn.ReLU(),
)
self.feature_mlp_gamma1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
self.feature_mlp_beta1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1)
def forward(self, x, segmap, guidance):
# Part 1. generate parameter-free normalized activations
x = self.norm(x)
# Part 2. produce scaling and bias conditioned on semantic map
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest')
mask_actv = self.mask_mlp_shared(segmap)
mask_gamma1 = self.mask_mlp_gamma1(mask_actv)
mask_beta1 = self.mask_mlp_beta1(mask_actv)
mask_gamma2 = self.mask_mlp_gamma2(mask_actv)
mask_beta2 = self.mask_mlp_beta2(mask_actv)
# Part 3. produce scaling and bias conditioned on feature guidance
guidance = F.interpolate(guidance, size=x.size()[2:], mode='bilinear')
feature_actv = self.feature_mlp_shared(guidance)
feature_gamma1 = self.feature_mlp_gamma1(feature_actv)
feature_beta1 = self.feature_mlp_beta1(feature_actv)
gamma_final = feature_gamma1 * (1 + mask_gamma1) + mask_beta1
beta_final = feature_beta1 * (1 + mask_gamma2) + mask_beta2
out = x * (1 + gamma_final) + beta_final
# apply scale and bias
return out
class ResBlock(TimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
):
super().__init__()
self.channels = channels
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.in_layers = nn.Sequential(
normalization(channels),
SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
self.out_layers = nn.Sequential(
normalization(self.out_channels),
SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return th.utils.checkpoint.checkpoint(self._forward, x ,emb)
# return checkpoint(
# self._forward, (x, emb), self.parameters(), self.use_checkpoint
# )
def _forward(self, x, emb):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
emb_out = self.emb_layers(emb)#.type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
scale, shift = th.chunk(emb_out, 2, dim=1)
h = out_norm(h) * (1 + scale) + shift
h = out_rest(h)
else:
h = h + emb_out
h = self.out_layers(h)
return self.skip_connection(x) + h
class SDMResBlock(CondTimestepBlock):
"""
A residual block that can optionally change the number of channels.
:param channels: the number of input channels.
:param emb_channels: the number of timestep embedding channels.
:param dropout: the rate of dropout.
:param out_channels: if specified, the number of out channels.
:param use_conv: if True and out_channels is specified, use a spatial
convolution instead of a smaller 1x1 convolution to change the
channels in the skip connection.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param use_checkpoint: if True, use gradient checkpointing on this module.
:param up: if True, use this block for upsampling.
:param down: if True, use this block for downsampling.
"""
def __init__(
self,
channels,
emb_channels,
dropout,
c_channels=3,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
dims=2,
use_checkpoint=False,
up=False,
down=False,
SPADE_type = "spade",
guidance_nc = None,
debug = False
):
super().__init__()
self.channels = channels
self.guidance_nc = guidance_nc
self.emb_channels = emb_channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_checkpoint = use_checkpoint
self.use_scale_shift_norm = use_scale_shift_norm
self.SPADE_type = SPADE_type
self.debug = debug
if self.SPADE_type == "spade":
self.in_norm = SPADEGroupNorm(channels, c_channels, debug=self.debug)
elif self.SPADE_type == "RESAIL":
self.in_norm = RESAILGroupNorm(channels, c_channels, guidance_nc)
elif self.SPADE_type == "SPM":
self.in_norm = SPMGroupNorm(channels, c_channels, guidance_nc)
self.in_layers = nn.Sequential(
SiLU(),
conv_nd(dims, channels, self.out_channels, 3, padding=1),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False, dims)
self.x_upd = Upsample(channels, False, dims)
elif down:
self.h_upd = Downsample(channels, False, dims)
self.x_upd = Downsample(channels, False, dims)
else:
self.h_upd = self.x_upd = nn.Identity()
self.emb_layers = nn.Sequential(
SiLU(),
linear(
emb_channels,
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
),
)
if self.SPADE_type == "spade":
self.out_norm = SPADEGroupNorm(self.out_channels, c_channels,debug=self.debug)
elif self.SPADE_type == "RESAIL":
self.out_norm = RESAILGroupNorm(self.out_channels, c_channels, guidance_nc)
elif self.SPADE_type == "SPM":
self.out_norm = SPMGroupNorm(self.out_channels, c_channels, guidance_nc)
self.out_layers = nn.Sequential(
SiLU(),
nn.Dropout(p=dropout),
zero_module(
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = conv_nd(
dims, channels, self.out_channels, 3, padding=1
)
else:
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
def forward(self, x, cond, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return th.utils.checkpoint.checkpoint(self._forward, x, cond, emb)
# return checkpoint(
# self._forward, (x, cond, emb), self.parameters(), self.use_checkpoint
# )
def _forward(self, x, cond, emb):
if self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM":
assert self.guidance_nc is not None, "Please set guidance_nc when you use RESAIL"
guidance = x[: ,x.shape[1] - self.guidance_nc:, ...]
else:
guidance = None
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
if self.SPADE_type == "spade":
if not self.debug:
h = self.in_norm(x, cond)
else:
h, (b1,g1) = self.in_norm(x, cond)
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM":
h = self.in_norm(x, cond, guidance)
h = in_rest(h)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
if self.SPADE_type == "spade":
if not self.debug:
h = self.in_norm(x, cond)
else:
h, (b1,g1) = self.in_norm(x, cond)
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM":
h = self.in_norm(x, cond, guidance)
h = self.in_layers(h)
emb_out = self.emb_layers(emb)#.type(h.dtype)
while len(emb_out.shape) < len(h.shape):
emb_out = emb_out[..., None]
if self.use_scale_shift_norm:
scale, shift = th.chunk(emb_out, 2, dim=1)
if self.SPADE_type == "spade":
if not self.debug:
h = self.out_norm(h, cond)
else:
h, (b2,g2) = self.out_norm(h, cond)
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM":
h = self.out_norm(h, cond, guidance)
h = h * (1 + scale) + shift
h = self.out_layers(h)
else:
h = h + emb_out
if self.SPADE_type == "spade":
h = self.out_norm(h, cond)
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM":
h = self.out_norm(x, cond, guidance)
h = self.out_layers(h)
if self.debug:
extra = {(b1,g1),(b2,g2)}
return self.skip_connection(x) + h, extra
else:
return self.skip_connection(x) + h
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other.
Originally ported from here, but adapted to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
"""
def __init__(
self,
channels,
num_heads=1,
num_head_channels=-1,
use_checkpoint=False,
use_new_attention_order=False,
):
super().__init__()
self.channels = channels
if num_head_channels == -1:
self.num_heads = num_heads
else:
assert (
channels % num_head_channels == 0
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
self.num_heads = channels // num_head_channels
self.use_checkpoint = use_checkpoint
self.norm = normalization(channels)
self.qkv = conv_nd(1, channels, channels * 3, 1)
if use_new_attention_order:
# split qkv before split heads
self.attention = QKVAttention(self.num_heads)
else:
# split heads before split qkv
self.attention = QKVAttentionLegacy(self.num_heads)
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
def forward(self, x):
return th.utils.checkpoint.checkpoint(self._forward, x)
#return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)
def _forward(self, x):
b, c, *spatial = x.shape
x = x.reshape(b, c, -1)
qkv = self.qkv(self.norm(x))
h = self.attention(qkv)
h = self.proj_out(h)
return (x + h).reshape(b, c, *spatial)
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial ** 2) * c
model.total_ops += th.DoubleTensor([matmul_ops])
class QKVAttentionLegacy(nn.Module):
"""
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class QKVAttention(nn.Module):
"""
A module which performs QKV attention and splits in a different order.
"""
def __init__(self, n_heads):
super().__init__()
self.n_heads = n_heads
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length)
@staticmethod
def count_flops(model, _x, y):
return count_flops_attn(model, _x, y)
class UNetModel(ModelMixin, ConfigMixin):
"""
The full UNet model with attention and timestep embedding.
:param in_channels: channels in the input Tensor.
:param model_channels: base channel count for the model.
:param out_channels: channels in the output Tensor.
:param num_res_blocks: number of residual blocks per downsample.
:param attention_resolutions: a collection of downsample rates at which
attention will take place. May be a set, list, or tuple.
For example, if this contains 4, then at 4x downsampling, attention
will be used.
:param dropout: the dropout probability.
:param channel_mult: channel multiplier for each level of the UNet.
:param conv_resample: if True, use learned convolutions for upsampling and
downsampling.
:param dims: determines if the signal is 1D, 2D, or 3D.
:param num_classes: if specified (as an int), then this model will be
class-conditional with `num_classes` classes.
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
:param num_heads: the number of attention heads in each attention layer.
:param num_heads_channels: if specified, ignore num_heads and instead use
a fixed channel width per attention head.
:param num_heads_upsample: works with num_heads to set a different number
of heads for upsampling. Deprecated.
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
:param resblock_updown: use residual blocks for up/downsampling.
:param use_new_attention_order: use a different attention pattern for potentially
increased efficiency.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=True,
num_heads=1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
mask_emb="resize",
SPADE_type="spade",
debug = False
):
super().__init__()
if num_heads_upsample == -1:
num_heads_upsample = num_heads
self.sample_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.debug = debug
self.mask_emb = mask_emb
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
SiLU(),
linear(time_embed_dim, time_embed_dim),
)
ch = input_ch = int(channel_mult[0] * model_channels)
self.input_blocks = nn.ModuleList(
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] #ch=256
)
self._feature_size = ch
input_block_chans = [ch]
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=int(mult * model_channels),
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = int(mult * model_channels)
#print(ds)
if ds in attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
self.middle_block = TimestepEmbedSequential(
SDMResBlock(
ch,
time_embed_dim,
dropout,
c_channels=num_classes if mask_emb == "resize" else num_classes*4,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
),
SDMResBlock(
ch,
time_embed_dim,
dropout,
c_channels=num_classes if mask_emb == "resize" else num_classes*4 ,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
#print(ch, ich)
layers = [
SDMResBlock(
ch + ich,
time_embed_dim,
dropout,
c_channels=num_classes if mask_emb == "resize" else num_classes*4,
out_channels=int(model_channels * mult),
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
SPADE_type=SPADE_type,
guidance_nc = ich,
debug=self.debug,
)
]
ch = int(model_channels * mult)
#print(ds)
if ds in attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
SDMResBlock(
ch,
time_embed_dim,
dropout,
c_channels=num_classes if mask_emb == "resize" else num_classes*4,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
debug=self.debug
)
if resblock_updown
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
self.out = nn.Sequential(
normalization(ch),
SiLU(),
zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
)
def _set_gradient_checkpointing(self, module, value=False):
#if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
module.gradient_checkpointing = value
def forward(self, x, y=None, timesteps=None ):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
if not th.is_tensor(timesteps):
timesteps = th.tensor([timesteps], dtype=th.long, device=x.device)
elif th.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(x.device)
timesteps = timestep_embedding(timesteps, self.model_channels).type(x.dtype).to(x.device)
emb = self.time_embed(timesteps)
y = y.type(self.dtype)
h = x.type(self.dtype)
for module in self.input_blocks:
# input_blocks have no any opts for y
h = module(h, y, emb)
#print(h.shape)
hs.append(h)
h = self.middle_block(h, y, emb)
if self.debug:
extra_list = []
for module in self.output_blocks:
temp = hs.pop()
#print("before:", h.shape, temp.shape)
# copy padding to match the downsample size
if h.shape[2] != temp.shape[2]:
p1d = (0, 0, 0, 1)
h = F.pad(h, p1d, "replicate")
if h.shape[3] != temp.shape[3]:
p2d = (0, 1, 0, 0)
h = F.pad(h, p2d, "replicate")
#print("after:", h.shape, temp.shape)
h = th.cat([h, temp], dim=1)
if self.debug:
h, extra = module(h, y, emb)
extra_list.append(extra)
else:
h = module(h, y, emb)
h = h.type(x.dtype)
if not self.debug:
return UNet2DOutput(sample=self.out(h))
else:
return UNet2DOutput(sample=self.out(h)), extra_list
class SuperResModel(UNetModel):
"""
A UNetModel that performs super-resolution.
Expects an extra kwarg `low_res` to condition on a low-resolution image.
"""
def __init__(self, image_size, in_channels, *args, **kwargs):
super().__init__(image_size, in_channels * 2, *args, **kwargs)
def forward(self, x, cond, timesteps, low_res=None, **kwargs):
_, _, new_height, new_width = x.shape
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
x = th.cat([x, upsampled], dim=1)
return super().forward(x, cond, timesteps, **kwargs)
class EncoderUNetModel(nn.Module):
"""
The half UNet model with attention and timestep embedding.
For usage, see UNet.
"""
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
pool="adaptive",
):
super().__init__()
if num_heads_upsample == -1:
num_heads_upsample = num_heads
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
SiLU(),
linear(time_embed_dim, time_embed_dim),
)
ch = int(channel_mult[0] * model_channels)
self.input_blocks = nn.ModuleList(
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
)
self._feature_size = ch
input_block_chans = [ch]
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=int(mult * model_channels),
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = int(mult * model_channels)
if ds in attention_resolutions:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
use_new_attention_order=use_new_attention_order,
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.pool = pool
if pool == "adaptive":
self.out = nn.Sequential(
normalization(ch),
SiLU(),
nn.AdaptiveAvgPool2d((1, 1)),
zero_module(conv_nd(dims, ch, out_channels, 1)),
nn.Flatten(),
)
elif pool == "attention":
assert num_head_channels != -1
self.out = nn.Sequential(
normalization(ch),
SiLU(),
AttentionPool2d(
(image_size // ds), ch, num_head_channels, out_channels
),
)
elif pool == "spatial":
self.out = nn.Sequential(
nn.Linear(self._feature_size, 2048),
nn.ReLU(),
nn.Linear(2048, self.out_channels),
)
elif pool == "spatial_v2":
self.out = nn.Sequential(
nn.Linear(self._feature_size, 2048),
normalization(2048),
SiLU(),
nn.Linear(2048, self.out_channels),
)
else:
raise NotImplementedError(f"Unexpected {pool} pooling")
def forward(self, x, timesteps):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:return: an [N x K] Tensor of outputs.
"""
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
results = []
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb)
if self.pool.startswith("spatial"):
results.append(h.type(x.dtype).mean(dim=(2, 3)))
h = self.middle_block(h, emb)
if self.pool.startswith("spatial"):
results.append(h.type(x.dtype).mean(dim=(2, 3)))
h = th.cat(results, axis=-1)
return self.out(h)
else:
h = h.type(x.dtype)
return self.out(h)