|
from abc import abstractmethod |
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch as th |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .nn import ( |
|
SiLU, |
|
checkpoint, |
|
conv_nd, |
|
linear, |
|
avg_pool_nd, |
|
zero_module, |
|
normalization, |
|
timestep_embedding, |
|
convert_module_to_f16 |
|
) |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from dataclasses import dataclass |
|
|
|
@dataclass |
|
class UNet2DOutput(BaseOutput): |
|
""" |
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Hidden states output. Output of last layer of model. |
|
""" |
|
|
|
sample: th.FloatTensor |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
""" |
|
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
spacial_dim: int, |
|
embed_dim: int, |
|
num_heads_channels: int, |
|
output_dim: int = None, |
|
): |
|
super().__init__() |
|
self.positional_embedding = nn.Parameter( |
|
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5 |
|
) |
|
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) |
|
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) |
|
self.num_heads = embed_dim // num_heads_channels |
|
self.attention = QKVAttention(self.num_heads) |
|
|
|
def forward(self, x): |
|
b, c, *_spatial = x.shape |
|
x = x.reshape(b, c, -1) |
|
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) |
|
x = x + self.positional_embedding[None, :, :].to(x.dtype) |
|
x = self.qkv_proj(x) |
|
x = self.attention(x) |
|
x = self.c_proj(x) |
|
return x[:, :, 0] |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
class CondTimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, cond, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
""" |
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock, CondTimestepBlock): |
|
|
|
def forward(self, x, cond, emb): |
|
for layer in self: |
|
if isinstance(layer, CondTimestepBlock): |
|
x = layer(x, cond, emb) |
|
elif isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
else: |
|
x = layer(x) |
|
return x |
|
""" |
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock, CondTimestepBlock): |
|
def forward(self, x, cond, emb): |
|
outputs_list = [] |
|
for layer in self: |
|
if isinstance(layer, CondTimestepBlock): |
|
|
|
result = layer(x, cond, emb) |
|
if isinstance(result, tuple) and len(result) == 2: |
|
x, additional_output = result |
|
outputs_list.append(additional_output) |
|
else: |
|
x = result |
|
elif isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
else: |
|
x = layer(x) |
|
|
|
if outputs_list == []: |
|
return x |
|
else: |
|
return x, outputs_list |
|
|
|
|
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate( |
|
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" |
|
) |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd( |
|
dims, self.channels, self.out_channels, 3, stride=stride, padding=1 |
|
) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class SPADEGroupNorm(nn.Module): |
|
def __init__(self, norm_nc, label_nc, eps = 1e-5,debug = False): |
|
super().__init__() |
|
self.debug = debug |
|
self.norm = nn.GroupNorm(32, norm_nc, affine=False) |
|
|
|
self.eps = eps |
|
nhidden = 128 |
|
self.mlp_shared = nn.Sequential( |
|
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
) |
|
self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
def forward(self, x, segmap): |
|
|
|
x = self.norm(x) |
|
|
|
|
|
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') |
|
actv = self.mlp_shared(segmap) |
|
gamma = self.mlp_gamma(actv) |
|
beta = self.mlp_beta(actv) |
|
|
|
|
|
if self.debug: |
|
return x * (1 + gamma) + beta, (beta.detach().cpu(), gamma.detach().cpu()) |
|
else: |
|
return x * (1 + gamma) + beta |
|
|
|
|
|
class AdaIN(nn.Module): |
|
def __init__(self, num_features): |
|
super().__init__() |
|
self.instance_norm = th.nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False) |
|
|
|
def forward(self, x, alpha, gamma): |
|
assert x.shape[:2] == alpha.shape[:2] == gamma.shape[:2] |
|
norm = self.instance_norm(x) |
|
return alpha * norm + gamma |
|
|
|
class RESAILGroupNorm(nn.Module): |
|
def __init__(self, norm_nc, label_nc, guidance_nc, eps = 1e-5): |
|
super().__init__() |
|
|
|
self.norm = nn.GroupNorm(32, norm_nc, affine=False) |
|
|
|
|
|
self.eps = eps |
|
nhidden = 128 |
|
self.mask_mlp_shared = nn.Sequential( |
|
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
) |
|
|
|
self.mask_mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.mask_mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
|
|
|
|
|
|
self.conv_s = th.nn.Conv2d(label_nc, nhidden * 2, 3, 2) |
|
self.pool_s = th.nn.AdaptiveAvgPool2d(1) |
|
self.conv_s2 = th.nn.Conv2d(nhidden * 2, nhidden * 2, 1, 1) |
|
|
|
self.conv1 = th.nn.Conv2d(guidance_nc, nhidden, 3, 1, padding=1) |
|
self.adaIn1 = AdaIN(norm_nc * 2) |
|
self.relu1 = nn.ReLU() |
|
|
|
self.conv2 = th.nn.Conv2d(nhidden, nhidden, 3, 1, padding=1) |
|
self.adaIn2 = AdaIN(norm_nc * 2) |
|
self.relu2 = nn.ReLU() |
|
self.conv3 = th.nn.Conv2d(nhidden, nhidden, 3, 1, padding=1) |
|
|
|
self.guidance_mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.guidance_mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
self.blending_gamma = nn.Parameter(th.zeros(1), requires_grad=True) |
|
self.blending_beta = nn.Parameter(th.zeros(1), requires_grad=True) |
|
self.norm_nc = norm_nc |
|
|
|
def forward(self, x, segmap, guidance): |
|
|
|
x = self.norm(x) |
|
|
|
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') |
|
mask_actv = self.mask_mlp_shared(segmap) |
|
mask_gamma = self.mask_mlp_gamma(mask_actv) |
|
mask_beta = self.mask_mlp_beta(mask_actv) |
|
|
|
|
|
|
|
guidance = F.interpolate(guidance, size=x.size()[2:], mode='bilinear') |
|
|
|
f_s_1 = self.conv_s(segmap) |
|
c1 = self.pool_s(f_s_1) |
|
c2 = self.conv_s2(c1) |
|
|
|
f1 = self.conv1(guidance) |
|
|
|
f1 = self.adaIn1(f1, c1[:, : 128, ...], c1[:, 128:, ...]) |
|
f2 = self.relu1(f1) |
|
|
|
f2 = self.conv2(f2) |
|
f2 = self.adaIn2(f2, c2[:, : 128, ...], c2[:, 128:, ...]) |
|
f2 = self.relu2(f2) |
|
guidance_actv = self.conv3(f2) |
|
|
|
guidance_gamma = self.guidance_mlp_gamma(guidance_actv) |
|
guidance_beta = self.guidance_mlp_beta(guidance_actv) |
|
|
|
gamma_alpha = F.sigmoid(self.blending_gamma) |
|
beta_alpha = F.sigmoid(self.blending_beta) |
|
|
|
gamma_final = gamma_alpha * guidance_gamma + (1 - gamma_alpha) * mask_gamma |
|
beta_final = beta_alpha * guidance_beta + (1 - beta_alpha) * mask_beta |
|
out = x * (1 + gamma_final) + beta_final |
|
|
|
|
|
return out |
|
|
|
class SPMGroupNorm(nn.Module): |
|
def __init__(self, norm_nc, label_nc, feature_nc, eps = 1e-5): |
|
super().__init__() |
|
print("use SPM") |
|
|
|
self.norm = nn.GroupNorm(32, norm_nc, affine=False) |
|
|
|
|
|
self.eps = eps |
|
nhidden = 128 |
|
self.mask_mlp_shared = nn.Sequential( |
|
nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
) |
|
|
|
self.mask_mlp_gamma1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.mask_mlp_beta1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
self.mask_mlp_gamma2 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.mask_mlp_beta2 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
|
|
|
|
self.feature_mlp_shared = nn.Sequential( |
|
nn.Conv2d(feature_nc, nhidden, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
) |
|
|
|
self.feature_mlp_gamma1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
self.feature_mlp_beta1 = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) |
|
|
|
|
|
def forward(self, x, segmap, guidance): |
|
|
|
x = self.norm(x) |
|
|
|
segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') |
|
mask_actv = self.mask_mlp_shared(segmap) |
|
mask_gamma1 = self.mask_mlp_gamma1(mask_actv) |
|
mask_beta1 = self.mask_mlp_beta1(mask_actv) |
|
|
|
mask_gamma2 = self.mask_mlp_gamma2(mask_actv) |
|
mask_beta2 = self.mask_mlp_beta2(mask_actv) |
|
|
|
|
|
|
|
guidance = F.interpolate(guidance, size=x.size()[2:], mode='bilinear') |
|
feature_actv = self.feature_mlp_shared(guidance) |
|
feature_gamma1 = self.feature_mlp_gamma1(feature_actv) |
|
feature_beta1 = self.feature_mlp_beta1(feature_actv) |
|
|
|
gamma_final = feature_gamma1 * (1 + mask_gamma1) + mask_beta1 |
|
beta_final = feature_beta1 * (1 + mask_gamma2) + mask_beta2 |
|
|
|
out = x * (1 + gamma_final) + beta_final |
|
|
|
|
|
return out |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
|
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_checkpoint: if True, use gradient checkpointing on this module. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels), |
|
SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
SiLU(), |
|
linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels), |
|
SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
|
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
|
|
return th.utils.checkpoint.checkpoint(self._forward, x ,emb) |
|
|
|
|
|
|
|
|
|
def _forward(self, x, emb): |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
class SDMResBlock(CondTimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
|
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_checkpoint: if True, use gradient checkpointing on this module. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
c_channels=3, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
up=False, |
|
down=False, |
|
SPADE_type = "spade", |
|
guidance_nc = None, |
|
debug = False |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.guidance_nc = guidance_nc |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
self.SPADE_type = SPADE_type |
|
self.debug = debug |
|
if self.SPADE_type == "spade": |
|
self.in_norm = SPADEGroupNorm(channels, c_channels, debug=self.debug) |
|
elif self.SPADE_type == "RESAIL": |
|
self.in_norm = RESAILGroupNorm(channels, c_channels, guidance_nc) |
|
elif self.SPADE_type == "SPM": |
|
self.in_norm = SPMGroupNorm(channels, c_channels, guidance_nc) |
|
self.in_layers = nn.Sequential( |
|
SiLU(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
SiLU(), |
|
linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
|
|
if self.SPADE_type == "spade": |
|
self.out_norm = SPADEGroupNorm(self.out_channels, c_channels,debug=self.debug) |
|
elif self.SPADE_type == "RESAIL": |
|
self.out_norm = RESAILGroupNorm(self.out_channels, c_channels, guidance_nc) |
|
elif self.SPADE_type == "SPM": |
|
self.out_norm = SPMGroupNorm(self.out_channels, c_channels, guidance_nc) |
|
|
|
self.out_layers = nn.Sequential( |
|
SiLU(), |
|
nn.Dropout(p=dropout), |
|
zero_module( |
|
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) |
|
), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd( |
|
dims, channels, self.out_channels, 3, padding=1 |
|
) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, cond, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
|
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
return th.utils.checkpoint.checkpoint(self._forward, x, cond, emb) |
|
|
|
|
|
|
|
|
|
def _forward(self, x, cond, emb): |
|
if self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM": |
|
assert self.guidance_nc is not None, "Please set guidance_nc when you use RESAIL" |
|
guidance = x[: ,x.shape[1] - self.guidance_nc:, ...] |
|
else: |
|
guidance = None |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
if self.SPADE_type == "spade": |
|
if not self.debug: |
|
h = self.in_norm(x, cond) |
|
else: |
|
h, (b1,g1) = self.in_norm(x, cond) |
|
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM": |
|
h = self.in_norm(x, cond, guidance) |
|
|
|
h = in_rest(h) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
if self.SPADE_type == "spade": |
|
if not self.debug: |
|
h = self.in_norm(x, cond) |
|
else: |
|
h, (b1,g1) = self.in_norm(x, cond) |
|
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM": |
|
h = self.in_norm(x, cond, guidance) |
|
h = self.in_layers(h) |
|
|
|
emb_out = self.emb_layers(emb) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
if self.SPADE_type == "spade": |
|
if not self.debug: |
|
h = self.out_norm(h, cond) |
|
else: |
|
h, (b2,g2) = self.out_norm(h, cond) |
|
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM": |
|
h = self.out_norm(h, cond, guidance) |
|
|
|
h = h * (1 + scale) + shift |
|
h = self.out_layers(h) |
|
else: |
|
h = h + emb_out |
|
if self.SPADE_type == "spade": |
|
h = self.out_norm(h, cond) |
|
elif self.SPADE_type == "RESAIL" or self.SPADE_type == "SPM": |
|
h = self.out_norm(x, cond, guidance) |
|
|
|
h = self.out_layers(h) |
|
if self.debug: |
|
extra = {(b1,g1),(b2,g2)} |
|
return self.skip_connection(x) + h, extra |
|
else: |
|
return self.skip_connection(x) + h |
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. |
|
|
|
Originally ported from here, but adapted to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
use_checkpoint=False, |
|
use_new_attention_order=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
if num_head_channels == -1: |
|
self.num_heads = num_heads |
|
else: |
|
assert ( |
|
channels % num_head_channels == 0 |
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" |
|
self.num_heads = channels // num_head_channels |
|
self.use_checkpoint = use_checkpoint |
|
self.norm = normalization(channels) |
|
self.qkv = conv_nd(1, channels, channels * 3, 1) |
|
if use_new_attention_order: |
|
|
|
self.attention = QKVAttention(self.num_heads) |
|
else: |
|
|
|
self.attention = QKVAttentionLegacy(self.num_heads) |
|
|
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) |
|
|
|
def forward(self, x): |
|
return th.utils.checkpoint.checkpoint(self._forward, x) |
|
|
|
|
|
def _forward(self, x): |
|
b, c, *spatial = x.shape |
|
x = x.reshape(b, c, -1) |
|
qkv = self.qkv(self.norm(x)) |
|
h = self.attention(qkv) |
|
h = self.proj_out(h) |
|
return (x + h).reshape(b, c, *spatial) |
|
|
|
|
|
def count_flops_attn(model, _x, y): |
|
""" |
|
A counter for the `thop` package to count the operations in an |
|
attention operation. |
|
Meant to be used like: |
|
macs, params = thop.profile( |
|
model, |
|
inputs=(inputs, timestamps), |
|
custom_ops={QKVAttention: QKVAttention.count_flops}, |
|
) |
|
""" |
|
b, c, *spatial = y[0].shape |
|
num_spatial = int(np.prod(spatial)) |
|
|
|
|
|
|
|
matmul_ops = 2 * b * (num_spatial ** 2) * c |
|
model.total_ops += th.DoubleTensor([matmul_ops]) |
|
|
|
|
|
class QKVAttentionLegacy(nn.Module): |
|
""" |
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping |
|
""" |
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", q * scale, k * scale |
|
) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, v) |
|
return a.reshape(bs, -1, length) |
|
|
|
@staticmethod |
|
def count_flops(model, _x, y): |
|
return count_flops_attn(model, _x, y) |
|
|
|
|
|
class QKVAttention(nn.Module): |
|
""" |
|
A module which performs QKV attention and splits in a different order. |
|
""" |
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.chunk(3, dim=1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", |
|
(q * scale).view(bs * self.n_heads, ch, length), |
|
(k * scale).view(bs * self.n_heads, ch, length), |
|
) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) |
|
return a.reshape(bs, -1, length) |
|
|
|
@staticmethod |
|
def count_flops(model, _x, y): |
|
return count_flops_attn(model, _x, y) |
|
|
|
|
|
class UNetModel(ModelMixin, ConfigMixin): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
|
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param num_heads_upsample: works with num_heads to set a different number |
|
of heads for upsampling. Deprecated. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
:param use_new_attention_order: use a different attention pattern for potentially |
|
increased efficiency. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
@register_to_config |
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_checkpoint=False, |
|
use_fp16=True, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
mask_emb="resize", |
|
SPADE_type="spade", |
|
debug = False |
|
): |
|
super().__init__() |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
self.sample_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
|
|
self.debug = debug |
|
|
|
self.mask_emb = mask_emb |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
ch = input_ch = int(channel_mult[0] * model_channels) |
|
self.input_blocks = nn.ModuleList( |
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
self._feature_size = ch |
|
input_block_chans = [ch] |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
|
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
self.middle_block = TimestepEmbedSequential( |
|
SDMResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
c_channels=num_classes if mask_emb == "resize" else num_classes*4, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
), |
|
SDMResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
c_channels=num_classes if mask_emb == "resize" else num_classes*4 , |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks + 1): |
|
ich = input_block_chans.pop() |
|
|
|
layers = [ |
|
SDMResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
c_channels=num_classes if mask_emb == "resize" else num_classes*4, |
|
out_channels=int(model_channels * mult), |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
SPADE_type=SPADE_type, |
|
guidance_nc = ich, |
|
debug=self.debug, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
|
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads_upsample, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
) |
|
) |
|
if level and i == num_res_blocks: |
|
out_ch = ch |
|
layers.append( |
|
SDMResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
c_channels=num_classes if mask_emb == "resize" else num_classes*4, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
debug=self.debug |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
ds //= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
SiLU(), |
|
zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)), |
|
) |
|
def _set_gradient_checkpointing(self, module, value=False): |
|
|
|
module.gradient_checkpointing = value |
|
def forward(self, x, y=None, timesteps=None ): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
|
|
hs = [] |
|
if not th.is_tensor(timesteps): |
|
timesteps = th.tensor([timesteps], dtype=th.long, device=x.device) |
|
elif th.is_tensor(timesteps) and len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(x.device) |
|
|
|
timesteps = timestep_embedding(timesteps, self.model_channels).type(x.dtype).to(x.device) |
|
emb = self.time_embed(timesteps) |
|
|
|
y = y.type(self.dtype) |
|
h = x.type(self.dtype) |
|
for module in self.input_blocks: |
|
|
|
h = module(h, y, emb) |
|
|
|
hs.append(h) |
|
|
|
h = self.middle_block(h, y, emb) |
|
|
|
if self.debug: |
|
extra_list = [] |
|
|
|
for module in self.output_blocks: |
|
temp = hs.pop() |
|
|
|
|
|
|
|
if h.shape[2] != temp.shape[2]: |
|
p1d = (0, 0, 0, 1) |
|
h = F.pad(h, p1d, "replicate") |
|
|
|
if h.shape[3] != temp.shape[3]: |
|
p2d = (0, 1, 0, 0) |
|
h = F.pad(h, p2d, "replicate") |
|
|
|
|
|
h = th.cat([h, temp], dim=1) |
|
if self.debug: |
|
h, extra = module(h, y, emb) |
|
extra_list.append(extra) |
|
else: |
|
h = module(h, y, emb) |
|
|
|
h = h.type(x.dtype) |
|
|
|
if not self.debug: |
|
return UNet2DOutput(sample=self.out(h)) |
|
else: |
|
return UNet2DOutput(sample=self.out(h)), extra_list |
|
|
|
|
|
class SuperResModel(UNetModel): |
|
""" |
|
A UNetModel that performs super-resolution. |
|
|
|
Expects an extra kwarg `low_res` to condition on a low-resolution image. |
|
""" |
|
|
|
def __init__(self, image_size, in_channels, *args, **kwargs): |
|
super().__init__(image_size, in_channels * 2, *args, **kwargs) |
|
|
|
def forward(self, x, cond, timesteps, low_res=None, **kwargs): |
|
_, _, new_height, new_width = x.shape |
|
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") |
|
x = th.cat([x, upsampled], dim=1) |
|
return super().forward(x, cond, timesteps, **kwargs) |
|
|
|
|
|
class EncoderUNetModel(nn.Module): |
|
""" |
|
The half UNet model with attention and timestep embedding. |
|
|
|
For usage, see UNet. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_checkpoint=False, |
|
use_fp16=False, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
pool="adaptive", |
|
): |
|
super().__init__() |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.use_checkpoint = use_checkpoint |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
ch = int(channel_mult[0] * model_channels) |
|
self.input_blocks = nn.ModuleList( |
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
self._feature_size = ch |
|
input_block_chans = [ch] |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
use_new_attention_order=use_new_attention_order, |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self._feature_size += ch |
|
self.pool = pool |
|
if pool == "adaptive": |
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
SiLU(), |
|
nn.AdaptiveAvgPool2d((1, 1)), |
|
zero_module(conv_nd(dims, ch, out_channels, 1)), |
|
nn.Flatten(), |
|
) |
|
elif pool == "attention": |
|
assert num_head_channels != -1 |
|
self.out = nn.Sequential( |
|
normalization(ch), |
|
SiLU(), |
|
AttentionPool2d( |
|
(image_size // ds), ch, num_head_channels, out_channels |
|
), |
|
) |
|
elif pool == "spatial": |
|
self.out = nn.Sequential( |
|
nn.Linear(self._feature_size, 2048), |
|
nn.ReLU(), |
|
nn.Linear(2048, self.out_channels), |
|
) |
|
elif pool == "spatial_v2": |
|
self.out = nn.Sequential( |
|
nn.Linear(self._feature_size, 2048), |
|
normalization(2048), |
|
SiLU(), |
|
nn.Linear(2048, self.out_channels), |
|
) |
|
else: |
|
raise NotImplementedError(f"Unexpected {pool} pooling") |
|
def forward(self, x, timesteps): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:return: an [N x K] Tensor of outputs. |
|
""" |
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) |
|
|
|
results = [] |
|
h = x.type(self.dtype) |
|
for module in self.input_blocks: |
|
h = module(h, emb) |
|
if self.pool.startswith("spatial"): |
|
results.append(h.type(x.dtype).mean(dim=(2, 3))) |
|
h = self.middle_block(h, emb) |
|
if self.pool.startswith("spatial"): |
|
results.append(h.type(x.dtype).mean(dim=(2, 3))) |
|
h = th.cat(results, axis=-1) |
|
return self.out(h) |
|
else: |
|
h = h.type(x.dtype) |
|
return self.out(h) |
|
|
|
|