forSubAnony's picture
ade20k
1cae162
raw
history blame
12 kB
import os
import math
import random
from PIL import Image
import blobfile as bf
import numpy as np
from torch.utils.data import DataLoader, Dataset
def load_data(
*,
dataset_mode,
data_dir,
batch_size,
image_size,
class_cond=False,
deterministic=False,
random_crop=True,
random_flip=True,
is_train=True,
):
"""
For a dataset, create a generator over (images, kwargs) pairs.
Each images is an NCHW float tensor, and the kwargs dict contains zero or
more keys, each of which map to a batched Tensor of their own.
The kwargs dict can be used for class labels, in which case the key is "y"
and the values are integer tensors of class labels.
:param data_dir: a dataset directory.
:param batch_size: the batch size of each returned pair.
:param image_size: the size to which images are resized.
:param class_cond: if True, include a "y" key in returned dicts for class
label. If classes are not available and this is true, an
exception will be raised.
:param deterministic: if True, yield results in a deterministic order.
:param random_crop: if True, randomly crop the images for augmentation.
:param random_flip: if True, randomly flip the images for augmentation.
"""
if not data_dir:
raise ValueError("unspecified data directory")
if dataset_mode == 'cityscapes':
all_files = _list_image_files_recursively(os.path.join(data_dir, 'leftImg8bit', 'train' if is_train else 'val'))
labels_file = _list_image_files_recursively(os.path.join(data_dir, 'gtFine', 'train' if is_train else 'val'))
classes = [x for x in labels_file if x.endswith('_labelIds.png')]
instances = [x for x in labels_file if x.endswith('_instanceIds.png')]
elif dataset_mode == 'ade20k':
all_files = _list_image_files_recursively(os.path.join(data_dir, 'images', 'training' if is_train else 'validation'))
classes = _list_image_files_recursively(os.path.join(data_dir, 'annotations', 'training' if is_train else 'validation'))
instances = None
elif dataset_mode == 'celeba':
# The edge is computed by the instances.
# However, the edge get from the labels and the instances are the same on CelebA.
# You can take either as instance input
all_files = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'test', 'images'))
classes = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'test', 'labels'))
instances = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'test', 'labels'))
elif dataset_mode == "crack500":
all_files = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'validation', 'images'))
classes = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'validation','annotations'))
instances = None
elif dataset_mode == "thincrack":
all_files = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'train', 'images'))
classes = _list_image_files_recursively(os.path.join(data_dir, 'train' if is_train else 'train','annotations'))
instances = None
else:
raise NotImplementedError('{} not implemented'.format(dataset_mode))
print("Len of Dataset:", len(all_files))
dataset = ImageDataset(
dataset_mode,
image_size,
all_files,
classes=classes,
instances=instances,
random_crop=random_crop,
random_flip=random_flip,
is_train=is_train
)
if deterministic:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True
)
else:
loader = DataLoader(
dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True
)
return loader, dataset
def _list_image_files_recursively(data_dir):
results = []
for entry in sorted(bf.listdir(data_dir)):
full_path = bf.join(data_dir, entry)
ext = entry.split(".")[-1]
if "." in entry and ext.lower() in ["jpg", "jpeg", "png", "gif"]:
results.append(full_path)
elif bf.isdir(full_path):
results.extend(_list_image_files_recursively(full_path))
return results
class ImageDataset(Dataset):
def __init__(
self,
dataset_mode,
resolution,
image_paths,
classes=None,
instances=None,
shard=0,
num_shards=1,
random_crop=False,
random_flip=True,
is_train=True
):
super().__init__()
self.is_train = is_train
self.dataset_mode = dataset_mode
self.resolution = resolution
self.local_images = image_paths[shard:][::num_shards]
self.local_classes = None if classes is None else classes[shard:][::num_shards]
self.local_instances = None if instances is None else instances[shard:][::num_shards]
self.random_crop = random_crop
self.random_flip = random_flip
def __len__(self):
return len(self.local_images)
def __getitem__(self, idx):
path = self.local_images[idx]
with bf.BlobFile(path, "rb") as f:
pil_image = Image.open(f)
pil_image.load()
pil_image = pil_image.convert("RGB")
out_dict = {}
class_path = self.local_classes[idx]
with bf.BlobFile(class_path, "rb") as f:
pil_class = Image.open(f)
pil_class.load()
pil_class = pil_class.convert("L")
if self.local_instances is not None:
instance_path = self.local_instances[idx] # DEBUG: from classes to instances, may affect CelebA
with bf.BlobFile(instance_path, "rb") as f:
pil_instance = Image.open(f)
pil_instance.load()
pil_instance = pil_instance.convert("L")
else:
pil_instance = None
if self.dataset_mode == 'cityscapes':
arr_image, arr_class, arr_instance = resize_arr([pil_image, pil_class, pil_instance], self.resolution)
else:
if self.is_train:
if self.random_crop:
arr_image, arr_class, arr_instance = random_crop_arr([pil_image, pil_class, pil_instance], self.resolution)
else:
arr_image, arr_class, arr_instance = center_crop_arr([pil_image, pil_class, pil_instance], self.resolution)
else:
arr_image, arr_class, arr_instance = resize_arr([pil_image, pil_class, pil_instance], self.resolution, keep_aspect=False)
if self.random_flip and random.random() < 0.5:
arr_image = arr_image[:, ::-1].copy()
arr_class = arr_class[:, ::-1].copy()
arr_instance = arr_instance[:, ::-1].copy() if arr_instance is not None else None
arr_image = arr_image.astype(np.float32) / 127.5 - 1
out_dict['path'] = path
out_dict['label_ori'] = arr_class.copy()
if self.dataset_mode == 'ade20k':
arr_class = arr_class - 1
arr_class[arr_class == 255] = 150
elif self.dataset_mode == 'coco':
arr_class[arr_class == 255] = 182
elif self.dataset_mode == 'crack500':
arr_class[arr_class == 255] = 1
elif self.dataset_mode == 'thincrack':
arr_class[arr_class == 255] = 1
out_dict['label'] = arr_class[None, ]
if arr_instance is not None:
out_dict['instance'] = arr_instance[None, ]
return np.transpose(arr_image, [2, 0, 1]), out_dict
def resize_arr(pil_list, image_size, keep_aspect=True):
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
pil_image, pil_class, pil_instance = pil_list
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
if keep_aspect:
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
else:
pil_image = pil_image.resize((image_size, image_size), resample=Image.BICUBIC)
pil_class = pil_class.resize(pil_image.size, resample=Image.NEAREST)
if pil_instance is not None:
pil_instance = pil_instance.resize(pil_image.size, resample=Image.NEAREST)
arr_image = np.array(pil_image)
arr_class = np.array(pil_class)
arr_instance = np.array(pil_instance) if pil_instance is not None else None
return arr_image, arr_class, arr_instance
def center_crop_arr(pil_list, image_size):
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
pil_image, pil_class, pil_instance = pil_list
while min(*pil_image.size) >= 2 * image_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = image_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
pil_class = pil_class.resize(pil_image.size, resample=Image.NEAREST)
if pil_instance is not None:
pil_instance = pil_instance.resize(pil_image.size, resample=Image.NEAREST)
arr_image = np.array(pil_image)
arr_class = np.array(pil_class)
arr_instance = np.array(pil_instance) if pil_instance is not None else None
crop_y = (arr_image.shape[0] - image_size) // 2
crop_x = (arr_image.shape[1] - image_size) // 2
return arr_image[crop_y : crop_y + image_size, crop_x : crop_x + image_size],\
arr_class[crop_y: crop_y + image_size, crop_x: crop_x + image_size],\
arr_instance[crop_y : crop_y + image_size, crop_x : crop_x + image_size] if arr_instance is not None else None
def random_crop_arr(pil_list, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)
# We are not on a new enough PIL to support the `reducing_gap`
# argument, which uses BOX downsampling at powers of two first.
# Thus, we do it by hand to improve downsample quality.
pil_image, pil_class, pil_instance = pil_list
while min(*pil_image.size) >= 2 * smaller_dim_size:
pil_image = pil_image.resize(
tuple(x // 2 for x in pil_image.size), resample=Image.BOX
)
scale = smaller_dim_size / min(*pil_image.size)
pil_image = pil_image.resize(
tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
)
pil_class = pil_class.resize(pil_image.size, resample=Image.NEAREST)
if pil_instance is not None:
pil_instance = pil_instance.resize(pil_image.size, resample=Image.NEAREST)
arr_image = np.array(pil_image)
arr_class = np.array(pil_class)
arr_instance = np.array(pil_instance) if pil_instance is not None else None
crop_y = random.randrange(arr_image.shape[0] - image_size + 1)
crop_x = random.randrange(arr_image.shape[1] - image_size + 1)
return arr_image[crop_y : crop_y + image_size, crop_x : crop_x + image_size],\
arr_class[crop_y: crop_y + image_size, crop_x: crop_x + image_size],\
arr_instance[crop_y : crop_y + image_size, crop_x : crop_x + image_size] if arr_instance is not None else None