File size: 13,367 Bytes
15acbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from functools import partial
from diffusers import DDPMScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler, DPMSolverSinglestepScheduler
from diffusers.pipeline_utils import DiffusionPipeline
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from typing import List, Optional, Tuple, Union
import numpy as np
from diffusers.schedulers.scheduling_utils import SchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
from diffusers.utils import randn_tensor, BaseOutput


### Testing the DDPM Scheduler for Variant 
class ModifiedDDPMScheduler(DDPMScheduler):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
    
    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: int,
        sample: torch.FloatTensor,
        generator=None,
        return_dict: bool = True,
    ) -> Union[DDPMSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`int`): current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            generator: random number generator.
            return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class

        Returns:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.

        """
        t = timestep

        prev_t = self.previous_timestep(t)

        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            print("Conidtion is trigger")
       
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
            # [2,3, 64, 128]
        else:
            predicted_variance = None

        # 1. compute alphas, betas
        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t

        # 2. compute predicted original sample from predicted noise also called
        # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
        if self.config.prediction_type == "epsilon":
            pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
        
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
        elif self.config.prediction_type == "v_prediction":
            pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
                " `v_prediction`  for the DDPMScheduler."
            )

        # 3. Clip or threshold "predicted x_0"
        if self.config.thresholding:
            pred_original_sample = self._threshold_sample(pred_original_sample)
        elif self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

        # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t

        # 5. Compute predicted previous sample µ_t
        # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample

        # 6. Add noise
        variance = 0
        if t > 0:
            device = model_output.device
            variance_noise = randn_tensor(
                model_output.shape, generator=generator, device=device, dtype=model_output.dtype
            )
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
            
            elif self.variance_type == "learned_range":
                variance = self._get_variance(t, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise

            else:
                variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
        
        pred_prev_sample = pred_prev_sample + variance
        print(pred_prev_sample.shape)
        if not return_dict:
            return (pred_prev_sample,)

        return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
   

class ModifiedUniPCScheduler(UniPCMultistepScheduler):
    '''
    This is the modification of UniPCMultistepScheduler, which is the same as UniPCMultistepScheduler except for the _get_variance function.
    '''
    def __init__(self, variance_type: str = "fixed_small", *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.custom_timesteps = False
        self.variance_type=variance_type
        self.config.timestep_spacing="leading"
    def previous_timestep(self, timestep):
        if self.custom_timesteps:
            index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
            if index == self.timesteps.shape[0] - 1:
                prev_t = torch.tensor(-1)
            else:
                prev_t = self.timesteps[index + 1]
        else:
            num_inference_steps = (
                self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
            )
            prev_t = timestep - self.config.num_train_timesteps // num_inference_steps

        return prev_t
    
    def _get_variance(self, t, predicted_variance=None, variance_type="learned_range"):
        prev_t = self.previous_timestep(t)

        alpha_prod_t = self.alphas_cumprod[t]
        alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
        current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev

        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t

        variance = torch.clamp(variance, min=1e-20)

        if variance_type is None:
            variance_type = self.config.variance_type

        if variance_type == "fixed_small":
            variance = variance
        elif variance_type == "fixed_small_log":
            variance = torch.log(variance)
            variance = torch.exp(0.5 * variance)
        elif variance_type == "fixed_large":
            variance = current_beta_t
        elif variance_type == "fixed_large_log":
            variance = torch.log(current_beta_t)
        elif variance_type == "learned":
            return predicted_variance
        elif variance_type == "learned_range":
            min_log = torch.log(variance)
            max_log = torch.log(current_beta_t)
            frac = (predicted_variance + 1) / 2
            variance = frac * max_log + (1 - frac) * min_log

        return variance

    def step(self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True) -> Union[SchedulerOutput, Tuple]:
        
        if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
            print("condition using predicted_variance is trigger")
            model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
        else:
            predicted_variance = None

        super_output = super().step(model_output, timestep, sample, return_dict=False)
        prev_sample = super_output[0]
        # breakpoint()
        variance = 0
        if timestep > 0:
            device = model_output.device
            variance_noise = randn_tensor(
                model_output.shape, generator=None, device=device, dtype=model_output.dtype
            )
            if self.variance_type == "fixed_small_log":
                variance = self._get_variance(timestep, predicted_variance=predicted_variance) * variance_noise
            elif self.variance_type == "learned_range":
                # breakpoint()
                variance = self._get_variance(timestep, predicted_variance=predicted_variance)
                variance = torch.exp(0.5 * variance) * variance_noise
                # breakpoint()
            else:
                variance = (self._get_variance(timestep, predicted_variance=predicted_variance) ** 0.5) * variance_noise

      
        # breakpoint()
        print("time step is ", timestep)
        prev_sample = prev_sample  + variance

        if not return_dict:
            return (prev_sample,)
        
        return DDPMSchedulerOutput(prev_sample=prev_sample,pred_original_sample=prev_sample) 

        #return SchedulerOutput(prev_sample=prev_sample)


def build_proc(sch_cfg=None, _sch=None, **kwargs):
    if kwargs:
        return _sch(**kwargs)

    type_str = str(type(sch_cfg))
    if 'dict' in type_str:
        return _sch.from_config(**sch_cfg)
    return _sch.from_config(sch_cfg, subfolder="scheduler")

scheduler_factory = {
    'UniPC' : partial(build_proc, _sch=UniPCMultistepScheduler),
    'modifiedUniPC' : partial(build_proc, _sch=ModifiedUniPCScheduler),
    # DPM family
    'DDPM' : partial(build_proc, _sch=DDPMScheduler),
    'DPMSolver' : partial(build_proc, _sch=DPMSolverMultistepScheduler, algorithm_type='dpmsolver'),
    'DPMSolver++' : partial(build_proc, _sch=DPMSolverMultistepScheduler),
    'DPMSolverSingleStep' : partial(build_proc, _sch=DPMSolverSinglestepScheduler)

}

def scheduler_setup(pipe : DiffusionPipeline = None, scheduler_type : str = 'UniPC', from_config=None, **kwargs):
    if not isinstance(pipe, DiffusionPipeline):
        raise TypeError(f'pipe should be DiffusionPipeline, but given {type(pipe)}\n')

    sch_cfg = from_config if from_config else pipe.scheduler.config  
    #sch_cfg = diffusers.configuration_utils.FrozenDict({**sch_cfg, 'solver_order':3})  
    #pipe.scheduler = scheduler_factory[scheduler_type](**kwargs) if kwargs \
    #                    else scheduler_factory[scheduler_type](sch_cfg)
    
    # pipe.scheduler = DPMSolverSinglestepScheduler()
    # #pipe.scheduler = DDPMScheduler(beta_schedule="linear", variance_type="learned_range")
    # print(pipe.scheduler)
    print("Scheduler type in Scheduler_factory.py is Hard-coded to modifyUniPC, Please change it back to AutoDetect functionality if you want to change scheudler")
    pipe.scheduler = ModifiedUniPCScheduler(variance_type="learned_range", )
    # pipe.scheduler = ModifiedDDPMScheduler(beta_schedule="linear", variance_type="learned_range")
    
    #pipe.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
    #pipe.scheduler._get_variance = _get_variance
    return pipe

# unittest of scheduler..
if __name__ == "__main__":
    def ld_mod():   
        noise_scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
        vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to("cuda").to(torch.float16)
        unet = SDMUNet2DModel.from_pretrained("/data/harry/Data_generation/diffusers-main/examples/VAESDM/LDM-sdm-model/checkpoint-46000", subfolder="unet").to("cuda").to(torch.float16)
        return noise_scheduler, vae, unet

    from Pipline import SDMLDMPipeline
    from diffusers import StableDiffusionPipeline
    import torch

    path = "CompVis/stable-diffusion-v1-4"
    pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
    
    # change scheduler 
    # customized args : once you customized, customize forever ~ no from_config
    #pipe = scheduler_setup(pipe, 'DPMSolver++', thresholding=True)
    # from_config
    pipe = scheduler_setup(pipe, 'DPMSolverSingleStep')

    pipe = pipe.to("cuda")
    prompt = "a highly realistic photo of green turtle"
    generator = torch.manual_seed(0)
    # only 15 steps are needed for good results => 2-4 seconds on GPU
    image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]
    # save image
    image.save("turtle.png")

    '''
    # load & wrap submodules into pipe-API
    noise_scheduler, vae, unet = ld_mod()
    pipe = SDMLDMPipeline(
        unet=unet,
        vqvae=vae,
        scheduler=noise_scheduler,
        torch_dtype=torch.float16
    )

    # change scheduler 
    pipe = scheduler_setup(pipe, 'DPMSolverSingleStep')
    pipe = pipe.to("cuda")
    '''