File size: 13,367 Bytes
15acbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from functools import partial
from diffusers import DDPMScheduler, DPMSolverMultistepScheduler, UniPCMultistepScheduler, DPMSolverSinglestepScheduler
from diffusers.pipeline_utils import DiffusionPipeline
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from typing import List, Optional, Tuple, Union
import numpy as np
from diffusers.schedulers.scheduling_utils import SchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
from diffusers.utils import randn_tensor, BaseOutput
### Testing the DDPM Scheduler for Variant
class ModifiedDDPMScheduler(DDPMScheduler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
sample: torch.FloatTensor,
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
generator: random number generator.
return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
t = timestep
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
print("Conidtion is trigger")
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
# [2,3, 64, 128]
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for the DDPMScheduler."
)
# 3. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
variance = 0
if t > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
elif self.variance_type == "learned_range":
variance = self._get_variance(t, predicted_variance=predicted_variance)
variance = torch.exp(0.5 * variance) * variance_noise
else:
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
pred_prev_sample = pred_prev_sample + variance
print(pred_prev_sample.shape)
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
class ModifiedUniPCScheduler(UniPCMultistepScheduler):
'''
This is the modification of UniPCMultistepScheduler, which is the same as UniPCMultistepScheduler except for the _get_variance function.
'''
def __init__(self, variance_type: str = "fixed_small", *args, **kwargs):
super().__init__(*args, **kwargs)
self.custom_timesteps = False
self.variance_type=variance_type
self.config.timestep_spacing="leading"
def previous_timestep(self, timestep):
if self.custom_timesteps:
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
if index == self.timesteps.shape[0] - 1:
prev_t = torch.tensor(-1)
else:
prev_t = self.timesteps[index + 1]
else:
num_inference_steps = (
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
)
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
return prev_t
def _get_variance(self, t, predicted_variance=None, variance_type="learned_range"):
prev_t = self.previous_timestep(t)
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
variance = torch.clamp(variance, min=1e-20)
if variance_type is None:
variance_type = self.config.variance_type
if variance_type == "fixed_small":
variance = variance
elif variance_type == "fixed_small_log":
variance = torch.log(variance)
variance = torch.exp(0.5 * variance)
elif variance_type == "fixed_large":
variance = current_beta_t
elif variance_type == "fixed_large_log":
variance = torch.log(current_beta_t)
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
min_log = torch.log(variance)
max_log = torch.log(current_beta_t)
frac = (predicted_variance + 1) / 2
variance = frac * max_log + (1 - frac) * min_log
return variance
def step(self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, return_dict: bool = True) -> Union[SchedulerOutput, Tuple]:
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
print("condition using predicted_variance is trigger")
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
super_output = super().step(model_output, timestep, sample, return_dict=False)
prev_sample = super_output[0]
# breakpoint()
variance = 0
if timestep > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=None, device=device, dtype=model_output.dtype
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(timestep, predicted_variance=predicted_variance) * variance_noise
elif self.variance_type == "learned_range":
# breakpoint()
variance = self._get_variance(timestep, predicted_variance=predicted_variance)
variance = torch.exp(0.5 * variance) * variance_noise
# breakpoint()
else:
variance = (self._get_variance(timestep, predicted_variance=predicted_variance) ** 0.5) * variance_noise
# breakpoint()
print("time step is ", timestep)
prev_sample = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDPMSchedulerOutput(prev_sample=prev_sample,pred_original_sample=prev_sample)
#return SchedulerOutput(prev_sample=prev_sample)
def build_proc(sch_cfg=None, _sch=None, **kwargs):
if kwargs:
return _sch(**kwargs)
type_str = str(type(sch_cfg))
if 'dict' in type_str:
return _sch.from_config(**sch_cfg)
return _sch.from_config(sch_cfg, subfolder="scheduler")
scheduler_factory = {
'UniPC' : partial(build_proc, _sch=UniPCMultistepScheduler),
'modifiedUniPC' : partial(build_proc, _sch=ModifiedUniPCScheduler),
# DPM family
'DDPM' : partial(build_proc, _sch=DDPMScheduler),
'DPMSolver' : partial(build_proc, _sch=DPMSolverMultistepScheduler, algorithm_type='dpmsolver'),
'DPMSolver++' : partial(build_proc, _sch=DPMSolverMultistepScheduler),
'DPMSolverSingleStep' : partial(build_proc, _sch=DPMSolverSinglestepScheduler)
}
def scheduler_setup(pipe : DiffusionPipeline = None, scheduler_type : str = 'UniPC', from_config=None, **kwargs):
if not isinstance(pipe, DiffusionPipeline):
raise TypeError(f'pipe should be DiffusionPipeline, but given {type(pipe)}\n')
sch_cfg = from_config if from_config else pipe.scheduler.config
#sch_cfg = diffusers.configuration_utils.FrozenDict({**sch_cfg, 'solver_order':3})
#pipe.scheduler = scheduler_factory[scheduler_type](**kwargs) if kwargs \
# else scheduler_factory[scheduler_type](sch_cfg)
# pipe.scheduler = DPMSolverSinglestepScheduler()
# #pipe.scheduler = DDPMScheduler(beta_schedule="linear", variance_type="learned_range")
# print(pipe.scheduler)
print("Scheduler type in Scheduler_factory.py is Hard-coded to modifyUniPC, Please change it back to AutoDetect functionality if you want to change scheudler")
pipe.scheduler = ModifiedUniPCScheduler(variance_type="learned_range", )
# pipe.scheduler = ModifiedDDPMScheduler(beta_schedule="linear", variance_type="learned_range")
#pipe.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
#pipe.scheduler._get_variance = _get_variance
return pipe
# unittest of scheduler..
if __name__ == "__main__":
def ld_mod():
noise_scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae").to("cuda").to(torch.float16)
unet = SDMUNet2DModel.from_pretrained("/data/harry/Data_generation/diffusers-main/examples/VAESDM/LDM-sdm-model/checkpoint-46000", subfolder="unet").to("cuda").to(torch.float16)
return noise_scheduler, vae, unet
from Pipline import SDMLDMPipeline
from diffusers import StableDiffusionPipeline
import torch
path = "CompVis/stable-diffusion-v1-4"
pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
# change scheduler
# customized args : once you customized, customize forever ~ no from_config
#pipe = scheduler_setup(pipe, 'DPMSolver++', thresholding=True)
# from_config
pipe = scheduler_setup(pipe, 'DPMSolverSingleStep')
pipe = pipe.to("cuda")
prompt = "a highly realistic photo of green turtle"
generator = torch.manual_seed(0)
# only 15 steps are needed for good results => 2-4 seconds on GPU
image = pipe(prompt, generator=generator, num_inference_steps=15).images[0]
# save image
image.save("turtle.png")
'''
# load & wrap submodules into pipe-API
noise_scheduler, vae, unet = ld_mod()
pipe = SDMLDMPipeline(
unet=unet,
vqvae=vae,
scheduler=noise_scheduler,
torch_dtype=torch.float16
)
# change scheduler
pipe = scheduler_setup(pipe, 'DPMSolverSingleStep')
pipe = pipe.to("cuda")
'''
|